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Executive Summary 

This report summarizes AMU activities for the second quarter of FY 98 (January - March 1998).  A detailed 
project schedule is included in the Appendix. 

During this quarter, AMU personnel supported six expendable vehicle launches and one Shuttle mission at 
Range Weather Operations.  Mr. Nutter also visited the Spaceflight Meteorology Group (SMG) at Johnson Space 
Center (JSC) from 20-23 January 1998 to observe weather operations in support of the STS-89 launch.  While at 
JSC, he also conducted a briefing on the status of current AMU tasks. 

Dr. Manobianco and Ms. Lambert attended the American Meteorological Society (AMS) Annual Meeting in 
Phoenix, AZ in January.  Ms. Lambert presented results from the 915 MHz profiler wind data QC task at the 10th 
Symposium on Meteorological Observations and Instrumentation.  Dr. Manobianco presented the preliminary 
results of the wind analyses from the 26-27 July 1997 case at the Second Symposium on Integrated Observing 
Systems, and selected results from the extended 29-km eta model objective evaluation at the 12th Conference on 
Numerical Weather Prediction.  These meetings provided an opportunity to receive comments and suggestions on 
our work from other experts in the field and to take advantage of their experiences with similar projects. 

Mr. Wheeler completed the report on the evaluation of WSR-88D thunderstorm cell attributes and trends in hail 
and high wind cases.  The report will be distributed in April 1998.  Mr. Wheeler also began work on the AMU’s 
SIGMET/IRIS task this quarter.  The primary goal of this task is to evaluate the capabilities of the SIGMET/IRIS 
processor on the WSR-74C radar for meeting the operational requirements of the 45WS and SMG in support of all 
ground, launch, and landing operations.  A summary of the WSR-88D cell trends final report and a description of 
the SIGMET/IRIS task are given in this report. 

Dr. Taylor and Ms. Lambert modified the Median Filter and Weber-Wuertz algorithms to quality control 
simulated real-time data.  They completed the analysis of the routines, and Ms. Lambert began writing the final 
report on the wind data quality assessment.  The report contains descriptions of the profiler network and the 
algorithms used, and a detailed discussion of their performance in both post-analysis and real-time modes.  A 
description of the quality control routines, a discussion of their results, and a summary of the conclusions are given 
in this report. 

Mr. Evans continued analyzing the plume resulting from the Delta 2 explosion on 17 January 1997 using WSR-
88D radar observations and the atmospheric models REEDM, RAMS, and HYPACT.  Preliminary results from his 
analyses are presented in this report.  Mr. Evans also continued work on the U.S. Air Force’s Model Validation 
Program (MVP) Data Analysis project.  The primary purpose of the MVP is to produce RAMS and HYPACT data 
for the three MVP sessions conducted at CCAS in 1995-1996.  This program involves evaluation of Range Safety’s 
modeling capability using controlled releases of tracers from both ground and aerial sources.  The status of the 
analyses for each session is given in this report. 

Mr. Nutter completed the objective evaluation of the meso-eta model and began writing the final report for the 
task.  In this quarter, statistics were generated for several of the warm and cool season convective indices.  The error 
statistics for the convective index forecasts were determined using all available model and observational data in 
1996 and 1997.  These statistics are presented in this report. 

Dr. Manobianco obtained, installed, and tested a new version of ADAS.  Recent modifications to ADAS 
include the addition of a complex cloud analysis scheme and provisions to handle aircraft data, satellite-derived 
cloud drift and water vapor winds, and other single level data types.  Dr. Manobianco also developed, tested, and 
installed software needed to reformat several other data types into ADAS. 

Dr. Merceret continued to advise John Lane, a Ph.D. candidate at the University of Central Florida, on a study 
of the measurement of raindrop size distributions and their effect on Z-R relations.  The work is directed at 
improving the use of WSR-88D and raingauge data as ground truth for NASA’s TRMM project. 
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SPECIAL NOTICE TO READERS 

AMU Quarterly Reports are now published on the Wide World Web (WWW).  The Universal Resource 
Locator for the AMU Home Page is: 

http://technology.ksc.nasa.gov/WWWaccess/AMU/home.html 

The AMU Home Page can also be accessed via links from the NASA KSC Internal Home Page alphabetical 
index.  The AMU link is “CCAS Applied Meteorology Unit”. 

If anyone on the current distribution would like to be removed and instead rely on the WWW for information 
regarding the AMU’s progress and accomplishments, please respond to Frank Merceret (407-853-8200, 
francis.merceret-1@ksc.nasa.gov) or Ann Yersavich (407-853-8203, anny@fl.ensco.com). 

1. BACKGROUND 

The AMU has been in operation since September 1991.  The progress being made in each task is discussed in 
Section 2 with the primary AMU point of contact reflected on each task and/or subtask. 

2. AMU ACCOMPLISHMENTS DURING THE PAST QUARTER 

2.1 TASK 001 AMU OPERATIONS 

Mr. Nutter visited the Spaceflight Meteorology Group (SMG) at Johnson Space Center (JSC) from 20-23 
January 1998 to observe weather operations in support of the STS-89 launch.  Mr. Richard Lafosse (SMG) helped 
arrange the visit and explained the motivation and methodology behind many of the operational support procedures.  
Mr. Nutter met with Mr. Frank Brody (SMG) to discuss aspects of SMG operations including organization, 
responsibilities, and issues associated with forecasting and evaluating Shuttle flight rules at time ranges from 0 to 5 
days.  While at JSC, he also conducted a briefing on the status of current AMU tasks.  The briefing and associated 
discussions lasted approximately two hours with an audience that included about six to eight SMG staff members.  
Overall, the visit helped maintain the two-way flow of information between SMG and the AMU by face to face 
discussions of work that is usually described only through written reports. 

2.2 TASK 004 INSTRUMENTATION AND MEASUREMENT 

SUBTASK 1 NEXRAD EXPLOITATION (MR. WHEELER) 

During this quarter Mr. Wheeler completed his report entitled, WSR-88D Cell Trends Final Report.  This report 
will be distributed in May 1998. 

The purpose of this report is to document the AMU’s evaluation of the Cell Trends display as a tool for radar 
operators to use in their evaluation of storm cell strength.  The objective of the evaluation is to assess the utility of 
the WSR-88D graphical Cell Trends display for local radar cell interpretation in support of the 45 Weather 
Squadron (45 WS), SMG, and National Weather Service (NWS) Melbourne (MLB) operational requirements. 

The evaluation guidelines along with the selected case days were determined by consensus among the 45 WS, 
SMG, NWS MLB, and AMU.  Four case days for a total of 52 cells were selected for evaluation: 29 March and 23 
April 1997 (cold season cases) and 11 July 1995 and 13 August 1996 (warm season cases).  The WSR-88D (Level 
II) base data from the NWS MLB was used along with WATADS (WSR-88D Algorithm Testing and Display) from 
the National Severe Storm Laboratory (NSSL) as the analysis tool.  WATADS allows for the replay of historical 
data and has all the algorithms used in the WSR-88D Build 9 operational system so it closely matches the WSR-
88D PUP product output. 

The analysis procedure was to identify each cell and track the maximum reflectivity, height of maximum 
reflectivity, storm top, storm base, hail and severe hail probability, cell-based Vertically Integrated Liquid (VIL) and 
core aspect ratio using WATADS Build 9.0 cell trends information.  One problem noted in the analysis phase was 
that the Storm Cell Identification and Tracking (SCIT) algorithm had a difficult time tracking the small cells 
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associated with the Florida weather regimes.  The analysis indicated numerous occasions when a cell track would 
end or an existing cell would be give a new ID in the middle of its life cycle. 

This investigation has found that most cells which produce hail or microburst events have discernible Cell 
Trends signatures.  Forecasters should monitor the PUP’s Cell Trends display for cells that show rapid (1 scan) 
changes in both the height of maximum reflectivity and cell-based VIL.  For microburst production, there is 
generally 

• An 8 Kft or greater decrease in the height of maximum reflectivity (initially at 18 Kft or 
greater) and  

• A decrease in cell-based VIL by 10 kg/m2 or greater prior to the wind event. 

For the hail events there is generally a rapid (1 volume scan) increase in 

• The height of maximum reflectivity by 8 Kft or greater to 18 Kft or greater and  

• The cell-based VIL by 10 kg/m2 or greater prior to the hail events. 

It is important to note that this a very limited data set (four case days).  Approximately 52 storm cells were 
analyzed during those four days.  The probability of detection was 88% for both events.  The False Alarm Rate 
(FAR) was a 36% for hail events and a respectable 25% for microburst events.  In addition, the Heidke Skill Score 
(HSS) was 0.65 for hail events and 0.67 for microburst events.  The HSS is 0 for a random forecast and 1 for a 
perfect forecast. 

Radar operators need to monitor storm cells and watch for trends that change quickly.  Any quick change in a 
cell’s structure is usually a precursor that a cell characteristic has changed or is changing.  These changes can be 
associated with the development or decay of a severe storm.  Using the WSR-88D PUP Cell Trends display can 
help the forecaster in highlighting trends in a cell’s attributes of: maximum reflectivity, height of maximum 
reflectivity, storm top, storm base, hail and severe hail probability, and cell-based VIL.  The AMU found that two of 
the key attributes to monitor are height of the maximum reflectivity and cell-based VIL.  By monitoring these two 
attributes simultaneously a forecaster can have advance warning that a storm cell is becoming severe and may 
produce a microburst or hail.  A rapid decrease in both attributes may indicate that the cell may have microburst 
potential and a rapid increase in both attributes may indicate that the cell is a hail producer. 

If you would like a copy of this report contact Mr. Wheeler at markw@fl.ensco.com. 

SUBTASK 2 915 MHZ BOUNDARY LAYER PROFILERS (DR. TAYLOR) 

Ms. Lambert attended the American Meteorological Society (AMS) Annual Meeting in Phoenix, AZ the week 
of 12 January.  While at the 10th Symposium on Meteorological Observations and Instrumentation, she presented 
results from using the consensus time check, the rain contamination check, and the Weber-Wuertz algorithm to 
assess the quality of the 915 MHz profiler wind data. 

Dr. Taylor and Ms. Lambert modified the Weber-Wuertz (WW) algorithm and Median Filter to quality control 
(QC) simulated real-time data.  These algorithms perform both spatial and temporal checks of the data.  The post-
analysis temporal checks compare data points to those in previous and subsequent profiles.  In real-time QC 
algorithms, the current profile is compared to profiles from previous times only.  This test revealed how the 
algorithms would perform in a real-time, operational setting. 

Ms. Lambert began writing the interim report on the wind data quality assessment.  The report contains 
descriptions of the profiler network and the algorithms used, and a detailed discussion of their performance in both 
post-analysis and real-time modes.  The following sections provide descriptions of the algorithms and a brief 
discussion of the results.  Detailed descriptions of the consensus time period, precipitation contamination, and WW 
algorithms are given in the previous AMU Quarterly Report (First Quarter FY-98).  For completeness, summary 
descriptions of these algorithms are given with detailed descriptions of the post-analysis and real-time WW and 
Median Filter algorithms. 
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The QC Algorithms 

Four QC algorithms were applied to the data.  The consensus time period algorithm, the rain contamination 
algorithm, WW, and the Median Filter.  The WW and Median Filter algorithms underwent modifications in order to 
simulate real-time QC.  Descriptions of the algorithms and the modifications needed to simulate real-time 
performance are given in the following paragraphs. 

Consensus Time Period Check 

When a profiler is reset during a consensus period, all data collected up to the time of the reset is erased.  
However, the profiler will continue to collect data through the end of the allotted period and calculate a consensus 
wind.  If the reset occurs toward the end of the period, a consensus wind is calculated from data collected over a 
very short time period.  This tends to create erroneous wind profiles.  If a profile is calculated from a consensus 
period of less than 6 minutes, it is flagged as suspect.  No modifications were needed for this algorithm to be used in 
real time. 

Rain Contamination Check 

It is well documented that rain can contaminate 915 MHz profiler data and is manifested in the data as large 
downward vertical velocities and high signal-to-noise ratios (SNRs) (Ralph et al. 1996).  Strong downward 
velocities and high SNRs in the data sets were often associated with erroneous profiles when rain was reported over 
the Cape area.  Plots of SNR versus vertical velocity revealed two distinct populations separating clear-air and rain 
contaminated data points.  This allowed development of a discriminant function (Panofsky and Brier 1968) which is 
used to determine if a wind estimate is contaminated by rain.  No modifications were needed for this algorithm to be 
used in real time. 

Weber-Wuertz Algorithm 

The Weber-Wuertz algorithm (WW) will recognize patterns in one- or two-dimensional arrays of any desired 
data type.  It is currently set up to recognize patterns in time and space in the individual consensus radial velocities 
of the three beams used in the consensus.  WW requires that certain parameters be set that dictate how the program 
will establish patterns.  Several iterations of tests were done using several data sets to determine the appropriate 
settings.  The next two sections describe the post-analysis and real-time versions of WW. 

Post-Analysis Mode 

Although any time period can be used, in this study WW checks 24 hours of data at a time in post-analysis 
mode.  This was convenient because each file contains 24 hours of data, which equates to 3072 points (96 profiles X 
32 gates).  All the data are input to the routine, then the patterns are determined for the whole period.  Thus, data 
collected before and after the wind estimate in question is used to determine whether or not the estimate fits into a 
pattern. 

Real-Time Mode 

When used in real time, this routine will only check the data in the current profile for reliability.  WW will only 
have present and past data available to check for continuity.  Simulations using archived data sets give an indication 
of the performance that can be expected from using WW in real time. 

The technique used in this study is similar to that used in Barth et al. (1997).  It uses a sliding time window to 
establish patterns, then checks all data points in the time window but only retains the results for the current profile.  
WW must establish new patterns when a new profile is introduced and uses a sliding window in order to use a 
consistent time period over which patterns are established.  The QC information from the previous profiles is 
retained when establishing new patterns, i.e. wind estimates previously flagged by WW and any other routine within 
the current time window are not used to quality control the current profile.  The time period chosen must be large 
enough for the algorithm to establish legitimate patterns, yet be small enough to allow the algorithm enough time to 
process the data before the next profile arrives and so that the current profile is displayed in a timely manner.  After 
several tests a time period of 6 hours, or 25 profiles, was chosen. 



               ENSCO 

 8

............................ 

............................ 

............................ 

............................ 

............................ 

............................ 

............................ 

............................ 

............................ 

............................

Time

H 
e 
i 
g 
h 
t

Step n
Step n+1

Step n+2
Step n+3

 
Figure 1. Illustration of the method in which WW is operated in real-time mode.  The dots indicate the time-

height data points, the four brackets below the grid labeled Step n, Step n+1, and so on represent the 
sliding time window, and the arrows on the right hand side of the brackets point to the current profile 
being QC’d. 

In Fig. 1 a grid of dots representing a portion of the data in each of the profiles over 28 time periods is shown.  
The first bracket, labeled Step n, encompasses the 25 profiles used in WW to establish data patterns.  These patterns 
are used to QC the current profile, which is indicated by the arrow on the right-hand side of the bracket.  Suspect 
data are flagged in this profile alone during this step.  When a new profile is produced, the window slides to the 
right, as shown by the bracket labeled Step n+1, and new patterns are established in WW as the process is repeated. 

Median Filter 

The median filter described in this section is not related in any form to the Median Filter/First Guess (MFFG) 
algorithm (Wilfong et al. 1993) which is used only on the NASA 50-MHz DRWP data.  The MFFG is applied to the 
individual beam spectral data as a temporal filter to remove outliers.  The median filter in this study uses equations 
that are adaptations of the routines developed in Carr et al (1995).  It tests the temporal and spatial consistency of 
the u- and v-components of the calculated horizontal wind in an attempt to identify suspect data.  The reader should 
not attempt to relate the performance of the MFFG to the performance of WW based on the comparisons of the 
median filter and WW algorithms contained in this section. 

This algorithm compares the u- and v-components of a horizontal wind observation to the medians of the u- and 
v-components of the surrounding (space and time) observations.  If the difference between the observed wind 
component, ui and/or vi, and the median of the neighboring observations, um and/or vm, exceeds a critical threshold, 
Tu and/or Tv, then the wind observation, ui and vi, is flagged as suspect. 

The critical threshold values, Tu and Tv, are computed as follows: 

   Tu = max (Tu1, T2) and 
   Tv = max (Tv1, T2) 

where 

   Tu1 = 0.2 * | um + ui | , 
   Tv1 = 0.2 * | vm + vi |, and 
   T2 = a * ( A * h2+ B * h + C ). 
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In T2 , 

   a  =  1.3, 
   h  =  height of the wind observation (feet), 
   A  =  -5.695 X 10-9, 

   B  =  3.66 X 10-4, and 

   C  =  7.3834. 
The next two sections describe the post-analysis and real-time versions of the Median Filter. 

Post-Analysis Mode 

For each wind observation the number of unflagged wind observations, N, in the eight surrounding points in a 
3x3 space and time grid box (30 minutes X 200 m) is determined (Fig. 2).  If N is greater than 3, then the medians 
of the u- and v-components of the unflagged wind observations are calculated and the median filter test is 
performed. 

.......  .......  .......  .......  .......  .......  .......
Time

200 m

Height

30 min
Wind 
Observations

Grid Boxes

Wind Observation 
Under Evaluation

 
Figure 2. Illustration of the method in which the median filter is operated in post-analysis mode.  The dots 

indicate the time-height wind observations and the center dot is the observation being QC’d. 

If N is less than 3, then the test grid box is enlarged to a 5x5 space and time grid box (1 hour X 400 m) and the 
same test procedure is invoked.  If N is greater than 3 for the 24 surrounding points in the 5x5 grid box, then the 
medians of the u- and v-components of the unflagged wind observations are calculated and the median filter test is 
performed.  If N is still less than 3 for the 5x5 grid box, then the test grid box is enlarged to a 7x7 space and time 
grid box (1.5 hours X 600 m) and the same test procedure is invoked.   If N is greater than 3 for the 48 surrounding 
points in the 7x7 grid box, then the medians of the u- and v-components of the unflagged wind observations are 
calculated and the median filter test is performed.  If N is less than 3 for the 7x7 grid box, then the median filter test 
is not applied and that wind observation is not flagged. 

Real-Time Mode 

For each wind observation, the number of unflagged wind observations, N, in the five surrounding points in a 
3x2 space and time grid box (15 minutes X 200 m) is determined (Fig. 3).  Note that in real-time mode the grid box 
is not symmetrical since the reference wind observations must be from the current or previous time periods.  If N is 
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greater than 3, then the medians of the u- and v-components of the unflagged wind observations are calculated and 
the median filter test is performed. 

....  ....  ....  ....  ....  ....  ....
Time
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15 min
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Wind Observation 
Under Evaluation

 
Figure 3. Illustration of the method in which the median filter is operated in real-time mode.  The dots indicate 

the time-height wind observations and the dot at right-center is the observation being QC’d. 

If N is less than 3, then test grid box is enlarged to a 5x3 space and time grid box (30 minutes X 400 m) and the 
same test procedure is invoked.  If N is greater than 3 for the 14 surrounding points in the 5x3 grid box, then the 
medians of the u- and v-components of the unflagged wind observations are calculated and the median filter test is 
performed.  If N is still less than 3 for the 5x3 grid box, then the test grid box is enlarged to a 7x4 space and time 
grid box (45 minutes X 600 m) and the same test procedure is invoked.   If N is greater than 3 for the 27 
surrounding grid points in the 7x4 grid box, then the medians of the u- and v-components of the unflagged wind 
observations are calculated and the median filter test is performed.  If N is less than 3 for the 7x4 grid box, then the 
median filter test is not applied and that wind observation is not flagged. 

Routine Combinations 

No one routine is able to effectively flag suspect data when used on its own.  Combinations of the four routines 
were examined, and two of those combinations were found most effective: 

 
Combination 1 (CPW) Combination 2 (CPM) 
Consensus Time 
Precipitation Contamination 
Weber-Wuertz 

Consensus Time 
Precipitation Contamination 
Median Filter 

The precipitation contamination and consensus time routines were used in both combinations.  Both of these 
routines were very effective at flagging data that met the specific criteria of each routine.  The median filter and 
WW routines were used in the combinations to flag all other suspect wind estimates. 

The algorithms must be used in a certain order.  The consensus time period and rain contamination checks do 
not depend on time or space continuity of the data, but only on the data values associated with the wind estimate 
being checked.  They are used to QC the data first to remove the obviously bad wind estimates.  This ensures that 
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WW will not see the areas of bad data as legitimate patterns and that the median filter will not use the bad values in 
the calculation of the median values.  When run in the order shown in the above lists, the algorithms do very well in 
flagging most of the bad data points while flagging few good data points. 

Data 

Profiler data for this study were collected during the period 1 May through 31 August 1997.  Five days with 
different weather phenomena were chosen from this period for algorithm development and testing.  They are 
summarized in Table 1.  The use of data collected in diverse weather conditions allows for a thorough analysis of 
how the routines respond in different weather regimes. 

 

Table 1. Summary of case days and their associated weather 
phenomena. 

Date Meteorological Conditions 

2 May 1997 Dry conditions, afternoon sea breeze 

12 May 1997 Rain over network all day 

15 May 1997 Nocturnal jet, afternoon sea breeze 

18 May 1997 Convection near network, afternoon sea breeze 

17 June 1997 Nocturnal jet, convection over network, afternoon sea 
breeze 

Results 

Results of the post-analysis and real-time modes of the CPW and CPM combinations are given in the next two 
sections.  All the data sets listed in the previous section were used in both the post-analysis and real-time versions of 
the two combinations.  Since they needed modification to run in real-time, the consensus time period and 
precipitation contamination checks flagged the same wind estimates in both modes and in both combinations.  The 
differences in the results are entirely due to the differences between the Median Filter and WW. 

Post-Analysis Mode 

The median filter and WW performed similarly in number of wind estimates flagged on most days.  However, 
there is large difference on 12 May in which WW flagged 140 more wind estimates than the median filter.  The bulk 
of this difference can be explained in the way both algorithms treat areas of isolated data.  In the case of the median 
filter, if there are not enough wind estimates to determine a median value, the wind estimate is not flagged.  
However, if a pattern contains less than 32 wind estimates, WW will flag all wind estimates in that pattern.  This 
can occur in areas where there are small groups of wind estimates surrounded by many missing (or previously 
flagged) winds.  The WW algorithm can not connect these isolated groups with other patterns in the data.  After the 
precipitation contamination algorithm was run in the 12 May data, such small pockets of isolated data existed. 

This is best illustrated by comparing Figs. 5 and 6 (Fig. 4 contains the raw wind speed data).  In Fig. 5 there are 
some data left by CPM between 0600 and 0800 UTC at 2000’.  CPW identified these isolated consensus winds as 
patterns with less than 32 wind estimates and flagged them as suspect.  There are other areas of data seen as vertical 
lines at 1200, 1645, 2015, and 2130 UTC in Fig. 5 that are not seen in Fig. 6 for this reason. 



               ENSCO 

 12

 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Height
(feet)

Time (UTC)

0

10

20

30

40

50

60

70

80

90

 
Figure 4. Wind speeds from the False Cape profiler on 12 May 1997.  Speeds are in knots (legend at right).  Areas 

of black indicate gates where a consensus wind was not calculated.  Precipitation contamination can be 
seen in the data mainly as temporally inconsistent wind speeds from profile to profile after 0800 UTC. 
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Figure 5. Wind speeds from the False Cape profiler on 12 May 1997 after CPM.  Speeds are in knots (legend at 

right).  Areas of black indicate gates where a consensus wind was not calculated and where the data were 
flagged by the algorithms. 
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Figure 6. Wind speeds from the False Cape profiler on 12 May 1997 after CPW.  Speeds are in knots (legend at 

right).  Areas of black indicate gates where a consensus wind was not calculated and where the data were 
flagged by the algorithms. 

Real-Time Mode 

A large difference in the number of wind estimates flagged between CPW and CPM on 12 May also existed in 
real-time mode.  The cause of this difference is the same as that for post-analysis mode and is discussed in the 
previous section.  A new large difference in the number of wind estimates flagged between CPW and CPM 
appeared on 17 June.  The raw wind speeds are shown in Fig. 7, and Figs. 8 and 9 show the wind speeds after CPM 
and CPW, respectively.  The large difference in the number of wind estimates flagged can be found mainly in the 
two profiles at 1815 and 2000 UTC. 

CPW flagged the two complete profiles at 1815 and 2000 UTC (Fig. 9).  Most of the winds were flagged 
because they did not fit the patterns that existed before the missing wind profiles.  CPM did not flag any wind 
estimates in the 1815 UTC profile, and flagged 11 wind estimates in the 2000 UTC profile between 4000 - 5500’, 
7500 - 8500’, and the top-most wind estimate (see white arrows in Fig. 8).  At 1815 UTC the missing data affected 
CPM such that it would only have the data above and below a wind estimate in the same profile to calculate the 
median (see Fig. 3).  The winds in this profile were spatially consistent at all levels and none were flagged.  This 
was not the case for the profile at 2000 UTC.  Substantially stronger values from the 1915 UTC profile were used in 
the calculation of the medians for the 2000 UTC wind estimates causing several of the wind estimates at this time to 
be flagged.  CPW flagged two complete profiles in which CPM only flagged 11 wind estimates.  This accounts for 
most of the difference in the number of wind estimates flagged between the two combinations on 17 June. 

Note that CPW did not flag the 6 wind estimates at 2030 UTC between 6500 - 8500’ (see white arrow in Fig. 
9).  These data are obviously erroneous and should have been flagged.  The entire profile at 2030 UTC was affected 
by rain and all other wind estimates in the profile were flagged by the precipitation contamination algorithm.  The 
data in question were not flagged by the precipitation contamination algorithm because it will not flag wind 
estimates in which less than 60% of the individual beam estimates were used in the calculation of the consensus 
vertical velocity.  WW will also not flag a wind estimate based on an inconsistent vertical velocity if less than 60% 
of the estimates were used in its calculation.  The oblique beam consensus velocities fit into previous patterns in 
WW and, therefore, the wind estimates were not flagged by this algorithm.  The horizontal wind estimates, 
however, are highly inconsistent with the estimates in the previous profiles.  Therefore, CPM successfully flagged 
these erroneous estimates because the difference between their u- and v-components and the median u- and v-
components exceeded the threshold value in the median filter routine. 
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Figure 7. Wind speeds from the False Cape profiler on 17 June 1997.  Speeds are in knots (legend at right).  Areas 

of black indicate gates where a consensus wind was not calculated. 
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2000 and 2015 Profiles  
Figure 8. Wind speeds from the False Cape profiler on 17 June 1997 after real-time CPM.  Speeds are in knots 

(legend at right).  Areas of black indicate gates where a consensus wind was not calculated and where 
the data were flagged by the algorithms. 
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1815 Profile  
Figure 9. Wind speeds from the False Cape profiler on 17 June 1997 after real-time CPW.  Speeds are in knots 

(legend at right).  Areas of black indicate gates where a consensus wind was not calculated and where 
the data were flagged by the algorithms. 

Summary 

The two routine combinations designated as CPM and CPW are compared in post-analysis and real-time 
modes.  Both routines perform similarly in both modes with some notable differences that have been discussed in 
this section.  These differences indicate that CPW is the better routine combination when used in the post-analysis 
mode, while CPM performs better in the real-time mode. 

Care should be taken when choosing one of the routines over the other, however, as they were closely 
scrutinized on only five 24-hour data sets.  An important point to consider is that the median filter was newly 
modified in the AMU and has not been tested on many data sets, while WW was developed several years ago 
(Weber and Wuertz 1991) and has been widely tested and used in the profiler community.  In light of the small data 
set used in the analysis and the fact that the results from the median filter were only slightly better than WW in the 
simulated real-time mode, it is difficult to recommend one routine over the other.  Either routine could be used in 
real time.  Whichever routine is chosen, it is critical that the consensus time and precipitation contamination checks 
be used to flag the obviously bad wind estimates before using either of the dependent routines.  Neither the median 
filter or WW performed acceptably when used alone. 

Detailed descriptions of the routines, the data sets, and the results are given in the interim report.  This report 
will be available after external review is complete, which is anticipated to be in May 1998.  For a copy of the 
interim report, please contact Ms. Lambert at winnie@fl.ensco.com. 
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SUBTASK 5 I&M AND RSA SUPPORT (DR. MANOBIANCO/MR. WHEELER) 

During February, Mr. Wheeler reviewed several documents (slides) from Hughes (RSA) on the RWO Weather 
Display system. 

SUBTASK 12 SIGMET/IRIS PROCESSOR EVALUATION (MR. WHEELER) 

The SIGMET/IRIS task was started in January 1998.  The primary goal of this task is to evaluate the 
capabilities of the SIGMET Integrated Radar Information System (IRIS) processor on the WSR-74C radar for 
meeting the operational requirements of the 45 WS and SMG in support of all ground, launch, flight operations, and 
Shuttle landings. 

For this task, the AMU will collect data and perform a preliminary evaluation of the new SIGMET radar 
display system for operational use.  Specific areas of investigation will include: 

• Integrated Reflectivity for Lightning Nowcasting: 

• Investigate the integrated reflectivity in the 0 to -10°, 0 to -20° and -10 to -20° ranges to 
determine if there are any key signatures that can be used to aid in nowcasting lightning 

• Integrated Reflectivity/Echo Tops for Microburst Nowcasting: 

• Investigate IRIS products/alerts of Vertically Integrated Liquid (VIL) and Storm Echo 
Tops and develop a nomogram threshold table (if possible) as a useful microburst 
warning tool 

• Layered Products for Monitoring Cloud Development: 

• Develop and investigate how best to utilize SIGMET layered products.  If useful, these 
products will be used to monitor cloud development in support of launch and landing 
operations. 

• Product Evaluation and Utilization in Support of Ground and Launch Operations along with 
Evaluation of Shuttle Flight Rules: 

• Evaluate the capabilities of the system relative to forecaster responsibilities to determine 
recommendations for optimal use of the system 

After the completion of all the analyses, the AMU will document the results, including any recommendations 
for operational use of the system, in a final report to be delivered in January 1999. 

Mr. Wheeler continues to work with the system to gain a better understanding of the SIGMET system.  System 
checkout includes new product generation, testing different product schedules, and archiving and restoring data for 
playback.  In addition, raw data will be archived for spring storms. 

Additional memory was added to the AMU’s SIGMET/IRIS processor during March.  This solved the problem 
of the system crashing every time more than one display window is opened on the screen.  With the additional 
memory, the system is more robust and does allow more windows to be opened for product display. 
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2.3 TASK 005 MESOSCALE MODELING 

SUBTASK 4 DELTA EXPLOSION ANALYSIS (MR. EVANS) 

The Delta Explosion Analysis project is being funded by KSC under AMU option hours.  The primary goal of 
this task is to conduct a case study of the explosion plume using the RAMS and REEDM models and compare the 
model results with available meteorological and plume observations.  The Melbourne WSR-88D radar data was 
preliminarily analyzed and provided information on the track of the clouds following the explosion. 

The comparison of the observed and predicted plumes is ongoing.  Some preliminary results are presented in 
Fig. 10.  The location of the observed plume was determined from the WSR-88D analysis.  The location of the 
predicted plume was determined by analyzing the concentrations predicted by the ERDAS HYPACT model for 10-
minute periods from 1630 UTC until 2030 UTC.  For each 10-minute period, the maximum concentration in each 
75-m thick layer was found.  The latitude, longitude, and height of this maximum concentration was then noted. 

The graph in Fig. 10 shows the location of the maximum concentration of the layer centered on 412.5 m.  This 
layer is near the center of the ground-based layer which contained the lower plume resulting from the explosion.  
The plume originated at Launch Complex 17 and then moved south over the following 4 hours.  The observed and 
predicted plume locations closely agreed for the first two hours except that the observed plume was slightly west of 
the predicted plume.  During the last two hours of the model simulation, the graph gives the appearance of a widely 
spreading plume.  This spread was not due to the plume shifting from the east to the west but due to the shift in the 
location of the predicted maximum concentration within the plume from one 10-minute period to the next. 

Figure 11 shows the rawinsonde sounding from 1613 UTC, approximately 15 minutes prior to the explosion.  
The base of the sharp capping inversion is evident at 900 meters.  The bulk of the plume was trapped below this 
inversion and was advected to the south by the northerly winds in this layer. 

 
Figure 10. Preliminary data of observed vs. predicted plume location for plume resulting from Delta II explosion at 

1628 UTC on 17 January 1997.  The observed plume location was determined by WSR-88D radar. The 
predicted plume location was determined by finding the maximum predicted HYPACT concentration in 
the 75-m layer centered at a height of 412 m.  The numbered circles represent the time of the observed 
and predicted plumes with the following time tags: 1: 1600-1700 UTC, 2: 1700-1800 UTC, 3: 1800-
1900 UTC, 4: 1900-2000 UTC, 5: 2000-2100 UTC. 
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Figure 11. Potential temperature plot of the Cape Canaveral rawinsonde at 1613 UTC on 17 January 1997.  Note 

the strong inversion base at 900 m. 

SUBTASK 5  MODEL VALIDATION PROGRAM (MR. EVANS) 

The primary purpose of the U.S. Air Force’s Model Validation Program (MVP) Data Analysis project, which is 
being funded by option hours from the U.S. Air Force, is to produce RAMS and HYPACT data for the three MVP 
sessions conducted at Cape Canaveral in 1995-1996.  This program involves evaluation of Range Safety’s modeling 
capability using controlled releases of tracers from both ground and aerial sources. 

The status of the MVP data analysis tasks is presented in Table 2. 
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Table 2. Status of MVP Data Analysis Tasks 

MVP Data Analysis Task Session I Session II Session III 

Prepare Data Completed In process Completed 

Run ERDAS-RAMS Completed Partially completed Completed 

Run ERDAS-HYPACT In process To be done Completed 

Run PROWESS-RAMS Completed To be done Completed 

Run PROWESS-HYPACT Completed To be done Completed 

Submit Data to NOAA-ATDD To be done To be done In process 

We continue working on the problem of providing readable tapes of the MVP data to NOAA/ATDD.  Apparent 
incompatibilities between AMU and NOAA tape drives have caused problems but NOAA plans to purchase a tape 
drive similar to one connected to an AMU PC.  This problem should be resolved soon. 

Processing of the Session II data is in progress.  Nine of the 16 MVP days had missing NGM data (used to 
initialize RAMS and provide boundary conditions).  An alternate source for the missing data is being pursued. 
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SUBTASK 6  EXTEND 29-KM ETA MODEL OBJECTIVE EVALUATION (MR. NUTTER) 

Data collection for surface and upper-air forecasts and observations at Cape Canaveral Air Station (XMR), 
Tampa Bay (TBW), and Edwards Air Force Base (EDW) concluded at the end of January 1998.  Also in January, 
Dr. Manobianco presented selected results from this work at the 12th Conference on Numerical Weather Prediction 
in Phoenix, AZ.  Mr. Nutter presented the same information to SMG personnel while visiting JSC to observe 
weather support for the STS-89 launch.  In February, Mr. Nutter completed data quality control and generated 
verification statistics for the 1997 cool season. 

Dr. Manobianco and Mr. Nutter completed preparation of a two-part Weather and Forecasting (WAF) 
manuscript based on meso-eta evaluation results.  The manuscript for part I describes results from the objective 
verification of surface and upper-air point forecasts at XMR, TBW, and EDW.  The analysis considers the most 
recently updated data from both the twin warm (May - August) and cool (October - January) season periods during 
1996 and 1997.  The manuscript for part II highlights results from the subjective evaluation of the meso-eta model 
during the 1996 warm and cool seasons.  The manuscripts were submitted to the chief editor of WAF in March 
1998. 

In March, Mr. Nutter began working on the final report for this task which will include and expand upon the 
results presented in part I of the WAF manuscript.  As an example of the expanded material, a preliminary analysis 
of meso-eta forecast accuracy for convective parameters is presented in the following sections.  Occasional 
references are made to an earlier verification of upper-air forecast accuracy that was discussed in the previous AMU 
Quarterly Report (First Quarter FY-98; hereafter QR1-98). 

Overview 

The meso-eta model configuration and data collection procedures applied for this work are described in QR1-
98.  Forecast errors are shown here for several warm and cool season convective indices at XMR and TBW.  
Results for EDW are not shown because convection is usually not a concern at that location.  Convective indices are 
computed using the numerical algorithms in the GEneral Meteorological PAcKage (GEMPAK; desJardins et al. 
1997).  The characteristics of the forecasts, observations, and their relationship are described using conditional 
quartile diagrams (Murphy et al. 1989).  Forecast errors are additionally quantified using the bias, RMS error, and 
error standard deviation statistics.  The error statistics for the convective index forecasts are determined using all 
available data in 1996 and 1997 from both the 0300 UTC and 1500 UTC model runs and corresponding 
observations. 

Conditional Quartile Diagrams 

Although traditional statistics such as the bias and RMS error are useful for quantifying overall forecast 
accuracy within a particular sample of data, they fail to describe completely the character of the relationship 
between given forecasts and their corresponding observations.  Murphy et al. (1989) demonstrate that such 
relationships are revealed, in part, by considering a factorization of the joint distribution between forecasts (f) and 
their observations (x).  Given a set of data containing f and x, the joint distribution p(f,x) specifies the relative 
frequency of occurrence for particular combinations of f and x.  The factorization for the joint distribution 
considered here is p(f,x) = p(x|f)p(f), where p(f) is the marginal distribution of the forecasts and p(x|f) is the 
conditional distribution of the observations given the forecasts.  Given the set of available forecasts, f, the marginal 
distribution p(f) describes the relative frequency of occurrence for each forecast value (or discretized range of 
values).  The conditional distribution of the observations given the forecasts, p(x|f), specifies the marginal 
distribution of the subset of all observations x which correspond to a particular forecast. 

The factorization of p(f,x) is useful because p(x|f) and p(f) specify the calibration and refinement of the 
forecasts, respectively (Murphy et al. 1989).  A set of forecasts is perfectly calibrated if, for each forecast f, the 
mean observation is equal to f.  A set of forecasts is completely unrefined if the same forecast value is produced on 
each occasion.  Therefore, a set of forecasts may be considered well refined and reliable if the marginal distribution 
of forecasts p(f) covers an appropriate range of values and the average of the conditional distribution of 
observations is equal to the forecast, f. 
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The relationship between p(x|f) and p(f) may be interpreted graphically using a conditional quartile diagram 
(Murphy et al. 1989).  For each set of convective index forecasts, the marginal distribution of the forecast values, 
p(f), is displayed using histograms.  In addition, the conditional distribution of the observations, p(x|f), is 
summarized for each given forecast value by the median, interquartile range (IQR), and minimum and maximum 
values.  The median represents the middle value of a set of ordered data and is alternately called the 50th percentile 
or 2nd quartile.  Similarly, the IQR represents the difference between the 3rd and 1st quartiles (75th and 25th 
percentiles).  The quartile lines extend across those index values that are forecast on at least five occasions and have 
been smoothed using a simple 3-point hanning algorithm (Tukey 1977).  Deviations of the conditional medians 
from the 45° reference line reveal that the forecasts are conditionally biased.  Specifically, deviations above (below) 
this line indicate forecasts from a particular category, which are more often smaller (larger) than observed.  More 
generally, the diagrams utilize five data points (minimum, 1st, 2nd and 3rd quartiles, and maximum) to describe the 
character of the conditional distributions for the observations associated with each given forecast value.  

Although the terminology is complex, the conditional quartile plots aid operational users by serving as a kind of 
historical lookup diagram which helps visualize the relationship between given forecasts and observations.  For 
example, if the meso-eta model provides a precipitable water (PWAT) forecast of 30 mm at XMR during the warm 
season, Fig. 12a indicates that such a forecast is traditionally uncommon and conditionally unbiased, and that 50% 
of the observations (i.e., the IQR) were within about ±5 mm of that given forecast value. 

The conditional quartile diagrams presented in Figs. 12-19 describes the relationship between forecast and 
observed convective indices during both warm and cool season at XMR and TBW.  Unless stated otherwise, the 
discussion refers jointly to the qualitative error characteristics at both XMR and TBW. 

Convective Index Error Characteristics 

The frequency distribution of forecast PWAT is comparable during the warm season at both XMR and TBW 
(Figs. 12a, b).  A slight conditional bias indicates that the observed PWAT is often underforecast by about 0 to 2 
mm.  This characteristic is confirmed in a more general sense by the overall negative (dry) forecast bias during the 
warm season (Table 3).  The IQR varies from about 5 to 10 mm while the conditional minimum and maximum 
observations are distributed evenly relative to the given forecast values.  Although the histogram of forecast PWAT 
is broader during the cool season, the character of the relationship between the forecasts and their observations 
remains mostly unchanged except for a reduction of the conditional dry bias (compare Figs 12a-d and Tables 3 and 
4).  In general, forecasts for PWAT are reliable and well refined. 

Warm season lifted index forecasts are distributed from about -5 to 4 °C (Fig. 13a, b).  A conditional bias is 
evident which suggests the forecast soundings typically have greater thermal stability than observed (i.e., forecast 
lifted index is greater than observed, on average).  This positive bias appears in the overall sample statistics (Table 
3) and was also identified previously in the form of a warm bias in the temperature error profile (QR1-98, Fig. 11).  
Notably, the conditional bias is smallest when the model predicts lifted indices around -3 to -4 °C.  In combination 
with the overall stable bias, the large variability indicated by the conditional IQR and extreme observations suggest 
that day-to-day fluctuations in lifted index are not well represented by the meso-eta model throughout the warm 
season.  During the cool season, the forecast lifted indices are distributed across a wider range of values (Figs. 13c, 
d).  Since the slope of the cool season conditional median is close to that of the 45° reference line, the conditional 
bias remains small throughout nearly the entire given range of forecast values.  Clearly, lifted index forecasts are 
most reliable during the cool season. 
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Figure 12. Quartile diagram showing the conditional distribution of observed PWAT (mm) associated with 
given forecast values and a histogram of the marginal distribution of forecasts.  For each marginal 
forecast of PWAT (indicated by histogram), the minimum (maximum) observations are shown by 
stars (circles), the .25 and .75 quartiles are shown by dotted lines, and the .50 quartile (or median) is 
shown by a heavy solid line. 
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Table 3. Bias, RMS error and error standard deviation for warm season (May - August) convective 
parameters at XMR and TBW. 

 Bias RMS Error Std. Dev. 
Convective Index XMR TBW XMR TBW XMR TBW 
Precipitable Water -1.81 -1.49 5.20 5.54 4.87 5.34 

Lifted Index 1.90 1.44 3.22 2.81 2.61 2.41 
K-Index -.37 .97 6.79 7.07 6.78 7.00 

LCL -5.63  -1.96 32.72 35.46 32.23 35.41 
CAPE -876.91 -543.34 1461.72 1104.69 1169.46 961.84 

Convective Inhibition -1.34 -9.31 65.75 63.56 65.74 62.88 
Helicity 5.21 3.58 40.46 37.89 40.12 37.72 
MDPI -.18 -.15 .35 .31 .31 .27 
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Figure 13. Quartile diagram showing the conditional distribution of observed lifted index (°C) associated with 
given forecast values and a histogram of the marginal distribution of forecasts.  For each marginal 
forecast of lifted index (indicated by histogram), the minimum (maximum) observations are shown 
by stars (circles), the .25 and .75 quartiles are shown by dotted lines, and the .50 quartile (or 
median) is shown by a heavy solid line. 
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Table 4. Bias, RMS error and error standard deviation for cool season (October - January) convective 
parameters at XMR and TBW. 

 Bias RMS Error Std. Dev. 
Convective Index XMR TBW XMR TBW XMR TBW 
Precipitable Water .31 -1.37 4.84 5.01 4.83 4.82 

Lifted Index -.61 -.06 2.90 2.83 2.83 2.83 
K-Index 2.19 -1.24 12.11 11.29 11.91 11.22 

LCL 16.58 10.64 39.53 36.65 35.88 35.07 
CAPE 19.88 7.13 393.51 291.89 393.01 291.81 

Convective Inhibition 1.88 2.21 32.55 47.05 32.50 46.99 
Helicity 10.93 4.17 77.21 79.69 76.43 79.58 
MDPI .06 .05 .27 .24 .26 .24 
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Figure 14. Quartile diagram showing the conditional distribution of observed K-index (°C) associated with 
given forecast values and a histogram of the marginal distribution of forecasts.  For each marginal 
forecast of K-index (indicated by histogram), the minimum (maximum) observations are shown by 
stars (circles), the .25 and .75 quartiles are shown by dotted lines, and the .50 quartile (or median) is 
shown by a heavy solid line. 

The frequency distribution of warm season K-index forecasts reveals that the indices most often lie in the range 
from approximately 28 to 32 °C (Figs. 14a, b).  The conditional bias within this range is small, but the IQR of about 
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8 °C reveals substantial day-to-day variability in the forecast errors.  The overall sample statistics (Table 3) also 
indicate that the K-index forecasts are nearly unbiased and that the error standard deviations are large in comparison 
to the mean.  Cool season K-index forecasts are more widely distributed than the warm season forecasts (Figs. 14c, 
d).  When cool season K-index forecasts are negative, they tend to indicate slightly greater stability than observed 
soundings.  Conversely, when positive, the forecasts tend to indicate slightly less stability than observed. 

When air parcels in the forecast soundings are lifted dry adiabatically, they most frequently reach saturation 
around 990 to 1000 mb during both warm and cool seasons (Fig. 15).  The conditional distribution of the observed 
lifted condensation level (LCL) reveals that forecasts are most reliable when the LCL is closer to the ground.  In 
particular, the large IQR and spread of extreme conditional observations reveals that LCL forecasts are less refined 
at lower pressures.  During the cool season, the conditional median more closely follows the 45° reference line, but 
the distributions still exhibit a large IQR.  Since subtle errors in low-level temperature and moisture will affect the 
calculation of forecast and observed LCL, it is not surprising that the variability is so large. 

During the warm season, the forecast convective available potential energy (CAPE) distribution reveals that 
most forecasts contain nearly zero CAPE and thus are quite stable (Fig. 16).  When warm season CAPE forecasts 
are less than about 1500 J kg-1, the conditional median of the observed CAPE distribution is larger than the given 
forecast values (Figs. 16a, b).  This result indicates that at smaller values, the warm season CAPE forecasts tend to 
underestimate the observed instability - a fact which is supported by the negative overall sample bias (Table 3).  The 
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Figure 15. Quartile diagram showing the conditional distribution of observed LCL (mb) associated with given 
forecast values and a histogram of the marginal distribution of forecasts.  For each marginal forecast 
of LCL (indicated by histogram), the minimum (maximum) observations are shown by stars 
(circles), the .25 and .75 quartiles are shown by dotted lines, and the .50 quartile (or median) is 
shown by a heavy solid line. 
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convective potential of the forecast soundings could be limited by the positive (warm) bias in middle- and upper-
tropospheric temperature (QR1-98, Fig. 11) since, in that environment, lifted air parcels would require greater 
energy to attain positive buoyancy.  It is noteworthy that even when zero CAPE is forecast the maximum observed 
CAPE at XMR may exceed 4100 J kg-1 during the warm season (3000 J kg-1 at TBW).  Therefore, warm season 
CAPE forecasts are susceptible to large errors. 

During the cool season, the frequency distribution of forecast CAPE at XMR and TBW reveals that the meso-
eta model often predicts a relatively stable environment with many forecast soundings again supporting zero CAPE 
(Figs. 16c, d).  Unlike warm season results, the cool season forecasts of small CAPE (i.e., near zero) exhibit little 
conditional bias and thus are reliable.  However, the wide distribution of the conditional extreme observations 
indicates that both warm and cool season CAPE forecasts occasionally suffer large errors.  Given cool season 
forecasts of large CAPE, a conditional bias becomes evident which suggests the environmental instability is 
overestimated.  However, the small sample sizes associated with such forecasts decrease the credibility of this 
particular result. 

The frequency distributions of convective inhibition (CIN) are similar to those of CAPE forecasts (compare 
Figs. 16 and 17).  Upon first inspection, the simultaneous and regular occurrence of zero CAPE and CIN may seem 
in contradiction.  However, the explanation is that a closed positive or negative area is not defined on a 
thermodynamic diagram if a lifted parcel fails to reach a level of free convection or equilibrium level within its 
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Figure 16. Quartile diagram showing the conditional distribution of observed CAPE (J kg-1) associated with 
given forecast values and a histogram of the marginal distribution of forecasts.  For each marginal 
forecast of CAPE (indicated by histogram), the minimum (maximum) observations are shown by 
stars (circles), the .25 and .75 quartiles are shown by dotted lines, and the .50 quartile (or median) is 
shown by a heavy solid line. 
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environment.  Under this circumstance, the GEMPAK numerical algorithm assigns zero CAPE and CIN to the 
sounding as lifted air parcels remain colder (more stable) than the environmental temperature at all levels.  
Examination of the warm season data from XMR (not shown) used to construct Figs. 16a and 17a reveals that 
instances of both zero CAPE and CIN occur in 4.9 and 2.8% of the available forecasts and observations, 
respectively.  Similarly, 33.9 and 39.3% of the cool season forecasts and observations at XMR exhibit zero CAPE 
and CIN.  The data for TBW demonstrate a comparable relationship.  These results indicate that warm season 
forecasts at XMR and TBW contain zero CIN and CAPE - and are therefore stable - more often than the observed 
soundings.  During the cool season, instances of zero CAPE and CIN occur regularly, though the observed 
environment is often more stable than the forecast environment. 

While considering all available data, the conditional median of the observations reveals that CIN is regularly 
underforecast during the warm season whenever the forecast CIN is near zero (Figs. 17a, b).  The fact that warm 
season forecasts of small (though not necessarily zero) CAPE and CIN both tend to underestimate their 
corresponding observations suggests that the model’s boundary layer error characteristics are different from those in 
the free atmosphere.  Indeed, the vertical profiles of temperature and mixing ratio bias (QR1-98, Figs. 11 and 12) 
each exhibit a shift in sign around the 700 mb level.  During the cool season, the CIN forecasts are conditionally 
unbiased when near zero (Figs. 17c, d).  This cool season reliability likely follows from the frequent occurrence of 
forecast and observed soundings with zero CAPE and CIN as discussed above.  Given larger CIN forecasts, the 

0 150 300 450
Forecast Conv. Inhibition

 0

 100

 200

 300

Sam
ple Size

Cool Season − XMR

0 

150 

300 

450 

O
bs

er
ve

d 
C

on
v.

 I
nh

ib
iti

on

0 150 300 450
Forecast Conv. Inhibition

 0

 100

 200

 300

Sam
ple Size

Warm Season − XMR

0 

150 

300 

450 

O
bs

er
ve

d 
C

on
v.

 I
nh

ib
iti

on

0 150 300 450
Forecast Conv. Inhibition

 0

 100

 200

 300

Sam
ple Size

Cool Season − TBW

0 

150 

300 

450 

O
bs

er
ve

d 
C

on
v.

 I
nh

ib
iti

on

0 150 300 450
Forecast Conv. Inhibition

 0

 100

 200

 300

Sam
ple Size

Warm Season − TBW

0 

150 

300 

450 

O
bs

er
ve

d 
C

on
v.

 I
nh

ib
iti

on

a) b)

c) d)

 

Figure 17. Quartile diagram showing the conditional distribution of observed CIN (J kg-1) associated with 
given forecast values and a histogram of the marginal distribution of forecasts.  For each marginal 
forecast of CIN (indicated by histogram), the minimum (maximum) observations are shown by stars 
(circles), the .25 and .75 quartiles are shown by dotted lines, and the .50 quartile (or median) is 
shown by a heavy solid line. 
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position of the conditional median relative to the 45° reference line indicates that CIN is usually overforecast during 
both the warm and cool seasons.  However, since forecasts of large CIN are relatively uncommon, this conditional 
bias should be considered cautiously. 

Positive and negative helicity (Davies-Jones et al. 1990; Lilly 1986) forecasts are nearly evenly distributed 
about zero and are thus well refined during both warm and cool seasons at XMR and TBW (Fig. 18).  Helicity 
forecasts with values near zero are conditionally unbiased.  However, the lower slope of the conditional median 
relative to the 45° reference line indicates that the magnitude of the helicity is often overforecast, particularly during 
the warm season.  The overall samples biases (Tables 3 and 4) are small but do not fully represent the tendency to 
overforecast the magnitude of nonzero helicity values as revealed by Fig. 18.  The frequency distribution of cool 
season helicity forecasts covers nearly double the range of values that are forecast during the warm season.  The 
corresponding RMS errors and error standard deviations are also approximately doubled during the cool season 
(Tables 3 and 4).  Since helicity is a measure of the vertically integrated wind shear over the lowest 3 km of the 
atmosphere, the larger errors during the cool season are likely related to an increase in forecast and observed wind 
speeds and corresponding wind shear. 

The frequency distribution for Microburst Day Potential Index (MDPI; Wheeler and Roeder 1996) forecasts 
indicates that most values occur in the range 0.8 to 0.9 during the warm season (Figs. 19a, b).  The MDPI forecasts 
are conditionally unbiased and therefore reliable when near 1.0.  Given MDPI forecasts less than 1.0, the potential 
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Figure 18. Quartile diagram showing the conditional distribution of observed helicity (m2 s-2) associated with 
given forecast values and a histogram of the marginal distribution of forecasts.  For each marginal 
forecast of helicity (indicated by histogram), the minimum (maximum) observations are shown by 
stars (circles), the .25 and .75 quartiles are shown by dotted lines, and the .50 quartile (or median) is 
shown by a heavy solid line. 
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for microburst development is often underforecast relative to the conditional distribution of observed MDPI.  
Conversely, the microburst potential is typically overestimated as the forecast MDPI exceeds 1.0.  Note that at 
XMR, the conditional maximum observed MDPI reach 1.25 across nearly the entire range of given forecast values 
(Fig 19a).  Since MDPI values above 1.0 support a high probability of wet microburst development at XMR 
(Wheeler and Roeder 1996), this result suggests that the model often fails to accurately predict the environment 
conducive for observed microburst.  The slight negative bias in the overall sample statistics (Table 3) supports the 
tendency to underestimate observed MDPI.  During the cool season, the MDPI forecasts cover a wider range of 
values (more refined) while the slope of the conditional median more closely matches that of the 45° reference line 
(more reliable).  

In general, the conditional quartile diagrams suggest that day-to-day fluctuations in observed convective indices 
at XMR and TBW are not well represented by the meso-eta model throughout the warm season.  The forecast 
indices are derived from model soundings which are generally more stable than observed in the warm season.  In 
addition, the relatively large IQR and spread between extreme values in the conditional distributions of observed 
indices suggest that forecasts occasionally suffer large errors in representing the true convective potential of the 
atmosphere.  The forecast biases and variability of the errors are confirmed by the overall sample statistics (Tables 3 
and 4) and support the notion that much of the error at upper levels is largely nonsystematic in nature.  The index 
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Figure 19. Quartile diagram showing the conditional distribution of observed MDPI associated with given 
forecast values and a histogram of the marginal distribution of forecasts.  For each marginal forecast 
of MDPI (indicated by histogram), the minimum (maximum) observations are shown by stars 
(circles), the .25 and .75 quartiles are shown by dotted lines, and the .50 quartile (or median) is 
shown by a heavy solid line. 
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forecasts are most refined and reliable overall during the cool season when, under normal circumstances, they 
provide little added value for most operational forecasting applications. 
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SUBTASK 7 DATA ASSIMILATION MODEL/CENTRAL FL DATA DEFICIENCY (DR. MANOBIANCO) 

In the previous AMU quarterly report (First Quarter FY 98), preliminary results were presented from a warm 
season case study from 26-27 July 1996.  The Advanced Regional Prediction System (ARPS) Data Analysis System 
(ADAS) was minimally configured to test its capabilities as a Local Data Integration System (LDIS) using only a 
single RUC background, surface observations, and NEXRAD radial velocity data.  This case was selected because 
wind gusts exceeding 30 kt associated with an outflow boundary originating from thunderstorms to the southwest of 
KSC/CCAS forced Atlas launch operation A1393 to be scrubbed for the day. 

In January, Dr. Manobianco presented the preliminary results of the wind analyses from the 26-27 July 1997 
case at the 2nd Symposium on Integrated Observing Systems in Phoenix, AZ.  Mr. Nutter also presented these 
results in January to SMG personnel while visiting JSC to observe weather support for the STS-89 launch.  SMG 
provided useful feedback on the initial results using LDIS.  They indicated that the 2-km rather than 10-km analyses 
show more utility in depicting the evolution of the thunderstorm outflow boundary for the 26-27 July case.  
However, the domain size of the 2-km grid (160 x 160 km centered over KSC/CCAS) is marginally adequate to 
help evaluate flight rules for a 90-minute landing forecast.  Mr. Tim Oram emphasized that the LDIS should 
ultimately provide derived products that will specifically aid in the evaluation of flight rules such as cloud 
height/thickness and be presented using a suitable visualization package such as Vis5D. 

In February, Dr. Manobianco installed and tested a new version of ADAS on the AMU’s IBM RS/6000 Model 
390.  This latest version of ADAS was obtained from Mr. Keith Brewster at the Center for Analysis and Prediction 
of Storms (CAPS).  Recent modifications to ADAS include the addition of a complex cloud analysis scheme and 
provisions to handle aircraft data, satellite-derived cloud drift and water vapor winds, and other single level data 
types.  With these additions, ADAS now has the capability to incorporate the same data sets as FSL-LAPS for 
analysis. 

Dr. Manobianco developed, tested, and installed software needed to reformat tower, METAR, buoy, 915-MHz 
and 50-MHz profiler, and RASS data into ADAS.  In addition, he completed the installation and testing of software 
provided by CAPS to interpolate visible and infrared GOES-8 satellite data in McIDAS area files to ADAS grids.  
The satellite data along with surface METAR and NEXRAD data are used in the complex-cloud analysis scheme. 

Dr. Manobianco and Mr. Nutter will continue with the warm and cool season case studies using the new 
version of ADAS to integrate all available data in central Florida and determine the potential added value of a LDIS. 
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2.4 AMU CHIEF’S TECHNICAL ACTIVITIES (DR. MERCERET) 

During the past quarter, Dr. Merceret continued to advise John Lane, a Ph.D. candidate at the University of 
Central Florida, on a study of the measurement of raindrop size distributions and their effect on Z-R relations.  The 
work is directed at improving the use of WSR-88D and raingauge data as ground truth for NASA’s TRMM project, 
and will serve as Mr. Lane’s doctoral dissertation.  It should also prove useful in using gauges to adjust or verify 
radar-derived rain rates, and may lead to improved NEXRAD rain rate algorithms for daily support to KSC/CCAS.  
Dr. Merceret completed an analysis of the effect of measurement errors in raindrop size distributions, Z and R on 
the calculation of Z-R relations. The results suggested some changes to Mr. Lane’s use of disdrometer data currently 
on hand. 
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NOTICE 

Mention of a copyrighted, trademarked, or proprietary product, service, or document does not constitute 
endorsement thereof by the author, ENSCO, Inc., the AMU, the National Aeronautics and Space Administration, or 
the United States Government.  Any such mention is solely for the purpose of fully informing the reader of the 
resources used to conduct the work reported herein. 
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Acronyms 

45 MXS 45th Maintenance Squadron 
45 WS 45th Weather Squadron 
ADAS ARPS Data Assimilation System 
AMU Applied Meteorology Unit 
AMS American Meteorological Society 
ARPS Advanced Regional Prediction System 
ATDD Atmospheric Turbulence and Diffusion Division 
AWIPS Advanced Weather Interactive Processing System 
CAPE Convective Available Potential Energy 
CAPS Center for Analysis and Prediction of Storms 
CCAS Cape Canaveral Air Station 
CIN Convective INhibition 
CPM Consensus time, Precipitation contamination, Median filter 
CPW Consensus time, Precipitation contamination, Weber-Wuertz 
CSR Computer Science Raytheon 
DRWP Doppler Radar Wind Profiler 
EDW Edwards Air Force Base Rawinsonde Station Identification 
ERDAS Emergency Response Dose Assessment System 
FAR False Alarm Rate 
FSL Forecast Systems Laboratory 
FSU Florida State University 
FY Fiscal Year 
GEMPAK GEneral Meteorological PAcKage 
GOES Goestationary Orbiting Environmental Satellite 
GVAR GOES Variable 
HSS Heidke Skill Score 
HYPACT Hybrid Particle And Concentration Transport 
I&M Improvement and Modernization 
IRIS Integrated Radar Information System 
IQR Interquartile Range 
JSC Johnson Space Center 
KSC Kennedy Space Center 
LAPS Local Analysis and Prediction System 
LCL Lifted Condensation Level 
LDIS Local Data Integration System 
McIDAS Man computer Interactive Data Access System 
MDPI Microburst Day Potential Index 
MFFG Median Filter/First Guess 
MSFC Marshall Space Flight Center 
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Acronyms 

MVP Model Validation Program 
NASA National Aeronautics and Space Administration 
NCAR National Center for Atmospheric Research 
NEXRAD NEXt-generation RADar 
NGM Nested Grid Model 
NOAA National Oceanic and Atmospheric Administration 
NSSL National Severe Storms Laboratory 
NWS MLB National Weather Service Melbourne 
PC Personal Computer 
PROWESS Parallelized RAMS Operational Weather Simulation System 
PUP Principle User Processor 
PWAT Precipitable WATer 
QC Quality Control 
QR1 First Quarterly Report 
RAMS Regional Atmospheric Modeling System 
RASS Radio Acoustic Sounding Systems 
REEDM Rocket Exhaust Effluent Diffusion Model 
RMS Root Mean Square 
RSA Range Standardization and Automation 
RUC Rapid Update Cycle 
RWO Range Weather Operations 
SCIT Storm Cell Identification and Tracking 
SMG Spaceflight Meteorology Group 
SNR Signal to Noise Ratio 
STS Space Transportation System 
USAF United States Air Force 
TBW Tampa Bay area Rawinsonde Station Identification 
TRMM Tropical Rainfall Measuring Mission 
VIL Vertically Integrated Liquid 
WAF Weather and Forecasting 
WATADS WSR-88D Algorithm Testing And Display System 
WSR-88D Weather Surveillance Radar - 88 Doppler 
WW Weber-Wuertz Algorithm 
WWW World Wide Web 
XMR Cape Canaveral Rawinsonde Station Identification 
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Appendix A 

AMU Project Schedule 

30 April 1998 

AMU Projects Milestones Actual / 
Projected 

Begin 
Date 

Actual / 
Projected 
End Date 

Notes/Status 

Cell Trend Comparison 
of WATADS vs. WSR-
88D 

Evaluate Effectiveness/Utility of 
88D Cell Trends 

Apr 97 Sep 97 Completed 

 Final Report Oct 97 Mar 98 In print - deliver in 
early May 

SIGMET/IRIS Processor 
Evaluation 

Evaluate SIGMET radar data 
manipulation and display 
capabilities for operational use 

Jan 98 Oct 98 On schedule 

 Final Report Oct 98 Jan 99 On schedule 
Boundary Layer 
Profilers 

Wind Data Quality Objective May 97 Jan 98 Completed 

 Interim Report Jan 98 Apr 98 1-month delay - 1 
routine did not 
exist prior to 
tasking - had to 
develop; NASA 
briefing took 
precedence - 
unable to assist in 
writing 

 Cool Season Data Collection Nov 97 Mar 98 Ongoing 
 RASS Data Quality Objective Feb 98 May 98 1-month delay due 

to interim report 
delay 

 Final Report Apr 98 Jun 98 1-month delay 
AF I&M and RSA 
Support 

Review Document / Products, 
Attend Meetings / Reviews, 
Document Advice, Suggestions, 
and Comments 

Jul 96 Ongoing On schedule 

Data Integration Model / 
Data Deficiency 

Identify Mesoscale Data Sources 
in central Florida 

May 97 May 98 On schedule 

 Identify / Install Prototype 
Analysis System 

Aug 97 Nov 97 On schedule 

 Case Studies Including Data 
Non-incorporation 

Nov 97 Jun 98 2-month delay - 
waiting for external 
data and software 
updates 

 Final Report Jul 98 Sep 98 2-month delay due 
to case studies 
delay 
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AMU Project Schedule 

30 April 1998 

AMU Projects Milestones Actual / 
Projected 

Begin 
Date 

Actual / 
Projected 
End Date 

Notes/Status 

29-km Eta Model 
Evaluation Extension 

Archive data for 1997/1998 May 97 Jan 98 Completed 

 Perform Analysis Sep 97 Feb 98 Completed 
 Final Report Mar 98 Apr 98 On schedule 
GVAR Sounder Products 
Evaluation 

Final Report Jul 98 Feb 99 Proposed 2-month 
associated with 
delay in LDIS  

Delta Explosion Analysis Analyze Radar Imagery Jun 97 Nov 97 Completed 
 Run Models/Analyze Results Jun 97 May 98 Conducting launch 

site climatology 
plan 

 Final Report Feb 98 Jun 98  
Model Validation 
Program 

Inventory and Conduct RAMS 
runs for Sessions I, II, and III 

Jul 97 Apr 98 Session I and III 
completed 

 Run HYPACT for all MVP 
releases 

Aug 97 Apr 98 Session III 
completed; Session 
I PROWESS 
completed 

 Deliver data to NOAA/ATDD Oct 97 Apr 98 Delayed due to 
delay NOAA’s tape 
read problems 

 Acquire meteorological data for 
Titan launches 

Jul 97 Sep 98 Till end of FY98 

 


