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Executive Summary 

The forecast cloud ceiling over the Shuttle Landing Facility (SLF) at Kennedy Space Center (KSC) is 
a critical element in determining whether a GO or NO GO should be issued for a Space Shuttle landing.  
However, the Spaceflight Meteorology Group (SMG) forecasters indicate that the ceiling at the SLF is 
challenging to forecast.  The Applied Meteorology Unit (AMU) was tasked to develop a statistical cloud 
ceiling forecast technique to aid forecasters in this critical area.  Recent studies in the literature have shown 
success using statistical methods to improve the short-term forecast of the Federal Aviation Administration 
(FAA) ceiling Flight Rules (FR).  These studies provided the basis for the AMU task methodology, which 
was to create statistical equations to forecast ceilings based on the Shuttle FR. 

A 20-year period of record (1978 – 1997) of hourly surface observation data from Daytona Beach 
(DAB), Orlando (MCO), Patrick Air Force Base (COF), Melbourne (MLB), and the SLF (TTS) was used 
for the equation development.  An analysis of the data revealed that the largest number of ceilings below 
the Shuttle FR thresholds at the SLF occurred in the cool season (October - March), with very few 
occurrences in the warm season.  Therefore, only the cool season data were used to develop the equations.  
The data were further stratified into dependent and independent datasets.  Equation development was done 
with the dependent data, and verification done with the independent data.  Of the 19 cool seasons in the 
dataset, 16 were chosen for the dependent dataset, leaving 3 cool seasons for the independent dataset. 

Two types of forecast equations were developed: observations-based (OBS) equations that 
incorporated data from the stations listed previously, and persistence climatology (PCL) equations used as 
a benchmark against which the OBS equations were tested.  Least squares multiple linear regression 
(MLR) was used as the statistical model for all the equations.  Equations were developed for each of three 
ceiling thresholds at 1-, 2-, and 3-hour lead times, and for each hour of the day.  The OBS equation 
development began with predictor selection using a forward stepwise regression.  In most of the OBS 
equations, the predictor that explained most of the variance was the observation of the predictand at the 
initial time.  This result was consistent with the findings in the literature.  Once the predictors were chosen, 
the OBS forecast equations were developed.  The PCL equations were made up of only two predictors: the 
observation of the predictand at the initial time and the climatology of the predictand at the valid time.  The 
climatology term was a simple mean calculation of the number of ceiling events of each threshold for each 
hour of every day of the cool season.  The PCL equations were developed after the climatologies were 
calculated. 

The OBS and PCL equations were used to make forecasts from all records in the independent data set.  
The OBS forecast errors were then compared quantitatively to the PCL forecast errors.  In order to test the 
performance of the OBS equations, the probability of detection (POD) and false alarm rate (FAR) were 
calculated.  The quantitative comparison indicated that the OBS equations produced an improvement over 
the PCL equations.  The OBS equation POD values were much larger than the FAR values, which 
indicated good performance overall.  A hypothesis test was used to determine whether the OBS equation 
improvement was statistically significant.  The improvement in skill created by the OBS equations was 
significant above the 99% confidence level.  Therefore, the conclusion of the AMU study is that OBS 
equations produced more accurate forecasts than the PCL equations, and can be used in operations. 

This success was tempered with other findings during the development.  The predictors in the OBS 
equations only accounted for 55-60% of the variance in the data for the 1-hour equations to 35-40% for the 
3-hour equations.  There are several possible reasons for the unexplained variance.  Other data, such as 
rawinsonde, satellite images or soundings, radar, or input from data assimilation software may be needed to 
fill the gap that the hourly surface observations could not.  Another issue is that several meteorological 
phenomena could be responsible for the development of ceilings in east-central Florida during the cool 
season, yet the data were only stratified by season and time of day.  A phenomenological stratification of 
the data would be time-consuming, but may be useful in developing more accurate forecast equations. 

The OBS equations developed in this study will be useful since they produce improved forecasts over 
the PCL equations.  They will provide another tool with which to make the ceiling forecasts critical to safe 
Shuttle landings at KSC.  Combined with other observational and model data, as well as forecaster 
experience, these equations can help to improve the ceiling forecasts at the SLF. 
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1. Introduction 

The forecast cloud ceiling over the Shuttle Landing Facility (SLF) at the Kennedy Space Center (KSC) 
is a critical element in determining whether a GO or NO GO should be issued for a Space Shuttle landing.  
For a GO decision to be issued, the cloud ceiling constraints defined by the Space Shuttle Flight Rules 
(FR) (NASA/JSC 1997a) in Table 1.1 must be observed GO at the de-orbit burn decision time and forecast 
GO for the time of landing.  However, the Spaceflight Meteorology Group (SMG) forecasters have found 
that cloud ceiling is a challenging parameter to forecast, even in the short-term (0-6 hours) when 
persistence is expected to be a reliable predictor.  The Applied Meteorology Unit (AMU) was tasked to 
develop a statistical cloud ceiling forecast technique to aid forecasters in this critical area. 

Table 1.1. List of Flight Rules (NASA/JSC 1997a) for 
ceiling thresholds at the Shuttle Landing Facility (SLF). 

Ceiling Threshold Flight Rule 

< 5000 ft Return to Launch Site (RTLS) 
< 8000 ft End of Mission (EOM) 

< 10 000 ft Navigation Aid Degradation 

1.1. Experimental Design Background 

The technique described in this report was developed according to the steps outlined by the World 
Meteorological Organization (1992, hereafter WMO): 

• Define the weather element to be predicted, i.e. the predictand. 

• Determine whether observational data, model output data, or both will be used in the forecast 
equations.  WMO (1992) suggests that observational data alone can be used for short-term 
forecast equations in the 0-6 hour time period. 

• Prepare the datasets by first selecting the predictors and determining which data types are 
needed, then stratify the data by time of day or year if necessary, and, finally, create the 
dependent and independent datasets. 

• Select the statistical model, e.g. linear regression, logistic regression, etc. 

• Develop and test the equations using the dependent dataset, 

• Test the equations using the independent dataset. 

The element to be predicted, or the predictand, was the ceiling observation at the SLF or some 
categorization thereof, and the short-term nature of the forecasts would imply that observational data only 
should be used to develop the equations (WMO 1992).  Selecting the statistical model and data types to use 
was a much more daunting task.  Several possible statistical models other than those listed above were 
possible candidates for the equations, from decision trees to neural networks.  Many data types were also 
considered.  Observational data available for the SLF included hourly surface observations, wind tower 
network data, upper air data from rawinsondes and profilers (50- and 915-MHz), Weather Surveillance 
Radar 1988 Doppler (WSR-88D) and WSR-74C radar data, satellite data, lightning data, and even output 
from several forecast models.  These choices had to be made before the datasets could be prepared and 
equations developed.  Two recent studies presented in the literature provided guidance in making the 
choices: Vislocky and Fritsch (1997) and Hilliker and Fritsch (1999).  Both showed success in improving 
the short-term cloud ceiling forecast. 
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1.1.1. Vislocky and Fritsch (1997) 

The main purpose of the Vislocky and Fritsch (1997, hereafter VF) study was to determine if an 
observations-based forecast system could be used to improve short-term forecasts of cloud ceiling and 
visibility.  According to VF, previous studies had used observational data from a single station to develop 
forecasts of surface conditions at that station in the short-term.  The difference in the VF study was that 
observational data from a network of stations surrounding the station of interest were added as predictors 
for that station’s surface conditions.  The dataset used by VF included 13 years of hourly observations 
from 202 sites in the Eastern United States and Southeastern Canada.  Of these 202 stations, 25 were 
chosen as the stations for which probability forecasts of ceiling and visibility categories would be made. 

The hourly surface observations of the standard Federal Aviation Administration (FAA) FR categories 
valid at 1 hour, 3 hours, and 6 hours after the initial times of 0300 and 1500 UTC were used as predictands.  
The predictands and most of the predictors were coded as binary in which a “1” signified that an 
observation satisfied a variable definition and a “0” signified the opposite.  A forward stepwise algorithm 
was used to select the best predictors and least squares multiple linear regression (MLR) (Wilks 1995) was 
used to develop the predictive equations.  The output from the observations-based equations were 
compared to that of a benchmark called persistence climatology to determine if the new equations offered 
an improvement.  The persistence climatology equations were also developed using MLR and contained 
the station observation of the predictand and the station climatology of the predictand as predictors.  VF 
called persistence climatology a “formidable benchmark” for short-term forecasts, and any improvement 
over it would be significant.  A model output statistics (MOS)-based system of equations was also 
produced and compared to persistence climatology. 

The equations were developed using 11 years of data and tested with the remaining two years.  The 
observations-based and MOS forecasts were quantitatively compared to those of persistence climatology.  
The results of the comparisons were averaged over the 25 stations and both initial times for each individual 
FR category and lead time.  They were presented as percent improvements over persistence climatology.  
Scores for the observations-based ceiling forecasts ranged from 6-20%, depending on the lead time and 
ceiling category.  The lowest ceiling category (< 500 ft) 1-hour forecast had the smallest improvement, and 
the highest ceiling category (< 6500 ft) 6-hour forecast had the largest improvement.  The skill of the 
observations-based 1-hour and 3-hour equations was superior to that of the MOS-based equations.  At the 
6-hour forecast, the MOS-based performance was slightly better than the observations-based performance, 
indicating that model output becomes an important predictor at this point and beyond.  These results 
indicated that for short-term forecasts (< 6 hours), more emphasis should be placed on using observational 
data from stations surrounding the forecast site instead of model data. 

1.1.2. Hilliker and Fritsch (1999) 

Following the basic premise of VF, Hilliker and Fritsch (1999, hereafter HF) developed equations to 
predict hourly probabilities of marine stratus burn-off at San Francisco International Airport (SFO).  This 
study built upon VF by adding upper-air sounding data as possible predictors for the equations.  The 
dataset included 15 years of standard hourly surface data from 14 sites around the San Francisco Bay area 
and rawinsonde data from Oakland, CA.  The data were stratified between warm and cool seasons because 
of the much larger occurrence of low ceilings during the warm season. 

For various reasons as explained in the article, HF chose the ceiling at or below 3000 ft between the 
hours of 1500 UTC and 2100 UTC, inclusive, as the predictand.  This also coincides with one of the 
standard FAA FR ceiling categories and, as such, was one of the predictors in VF.  As in VF, the 
predictand and most of the predictors were coded as binary.  In the experiments, 1- to 6-hour forecast 
equations were created with 1500 and 1800 UTC as the valid time.  As in VF, a forward stepwise 
algorithm was used to select the best predictors, but logistic regression (LGR) (Wilks 1995) was used to 
develop the predictive equations instead of MLR.  The output of the equations was a probability of 
occurrence value between 0 and 1 inclusive.  Similar to VF, the observations-based equations were 
compared to the benchmark persistence climatology. 
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The equations were developed using 12 years of data and tested on the remaining three years.  
Equations using only surface observations and equations using surface and upper-air data were created to 
determine if adding rawinsonde data made a significant improvement in the forecast over surface data 
alone.  As in VF, a MOS-based system of equations was produced and also compared to persistence 
climatology.  The results were averaged for each lead time and each season.  The observations-based 
forecasts again showed improvement over persistence climatology from 17-21% in the warm season and 6-
10% in the cool season.  The addition of rawinsonde data increased the improvement by approximately 
3%.  As in VF, the observations-based forecasts produced a larger improvement over persistence 
climatology than did the MOS equations, indicating that observational data is more important for short-
term forecasts than is model data. 

1.2. AMU Study 

These two successful studies provided a model for the AMU to follow in determining the predictands, 
choosing the statistical model and data types, and narrowing down the possible predictor list for similar 
observations-based equations.  However, the AMU task differed from the studies in the literature in two 
ways.  First, the previous studies used data from the eastern United States (not including Florida) and the 
San Francisco Bay area where persistent ceilings were known to exist.  Such conditions are not the norm in 
the subtropical environment of east-central Florida.  Second, the studies used standard FAA FR cloud 
ceiling categories as predictands.  The predictands in the AMU task were the ceiling thresholds as defined 
by the Space Shuttle FR. 

There are five sections in this report.  Section 2 describes all aspects of the data type used including 
period of record, locations, quality control, exploratory data analysis, and stratification.  Section 3 
discusses what predictands and predictors were used and the approach used in developing the equations.  
The statistics showing the performance of the equations are given in Section 4, and the conclusions based 
on those results are discussed in Section 5. 
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2. Data 

The successful results documented in VF and HF as well as the information from WMO (1992) led to 
the conclusion that the predictands and predictors should be drawn from observational data exclusively.  
The equations in VF and HF used the standard hourly surface observations.  Therefore, the hourly surface 
observations from the SLF (3-letter station identifier TTS) and several stations in east-central Florida were 
collected from the Air Force Combat Climatology Center (AFCCC) to develop the equations in this study.  
The period of record (POR) for TTS provided by AFCCC covered 20 years from January 1978 to March 
1997. 

2.1. Surface Observation Locations 

The map in Figure 2.1 shows the locations of the stations provided in the AFCCC dataset.  The stars 
and boxes indicate the locations of the hourly surface observations and upper-air soundings, respectively.  
The triangles are the locations of operational buoys and Coastal Marine Automated Network (CMAN) 
stations.  These datasets were acquired through the National Data Buoy Center (NDBC). 

 
Figure 2.1. A map of the locations of the stations whose data were considered for this task.  The stars 

indicate the hourly surface observation stations, the solid boxes indicate the upper-air 
sounding stations, and the triangles indicate the CMAN and buoy stations.  The surface 
stations with boxes surrounding them were the only stations used in this study. 
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The data from all the stations were examined for POR and the amount of missing data.  Several of the 
hourly surface observation stations closed during the 20-year POR, others had long periods of missing data 
on the order of days to several months at a time.  These stations were deemed not usable for the study.  The 
list of possible surface observation stations, other than TTS, was narrowed to the following: 

• Jacksonville (JAX), 

• Daytona Beach (DAB), 

• Orlando (MCO), 

• Tampa (TPA), 

• Patrick Air Force Base (COF), 

• Melbourne (MLB), 

• Vero Beach (VRB), and 

• West Palm Beach (PBI). 

Of these stations, COF was closed during the nighttime hours.  However, its data could still be important in 
daytime forecast equations due to its close proximity to TTS and was kept in the dataset.  During equation 
development (Section 3), data from JAX, TPA, VRB, or PBI were never chosen as potential predictors in 
the selection process.  Therefore, the only hourly surface observations used were from TTS, DAB, MCO, 
COF, and MLB. 

The rawinsonde data were also checked for POR and missing data, and the TTS dataset was deemed 
usable.  However, considering both the amount of time needed to preprocess and quality check the upper-
air data and the small gain from using upper-air data found in HF, the AMU decided to develop the 
equations using only surface observations.  If good results were found using the surface data and time 
permitted, the sounding data would be processed and added to the predictor list.  The POR for the buoy 
data was only 10 years, not long enough to match the POR of the hourly surface and rawinsonde data.  As 
will be seen in Section 3, surface observations of cloud parameters were chosen as the predictors almost 
exclusively over variables such as temperature or wind speed.  The buoy data did not contain cloud reports 
and would likely not have contributed to the equations.  It was, therefore, not used in this study. 

2.2. Data Pre-processing 

The data from AFCCC were provided unformatted and had not been checked for quality.  Therefore, 
the AMU created software to decode the data and put it in a format that could be imported to a spreadsheet 
or database.  The data were also filtered and checked for quality (QC) during the decoding. 

The filter removed all special observations and kept only the regular observations that were made on 
the hour.  Special observations were made only when there is a significant change in the weather within the 
hour and were not uniform in time.  As such, there were relatively few in the dataset and they were not 
made at consistent times, making it difficult to determine how to use their information in the equation 
development. 

Three QC routines were applied to the hourly data in order to remove erroneous values in the 
observations.  The first QC applied was an “impossible value” check that removed values of certain 
variables that could not possibly exist, or were very unlikely to exist in central Florida.  The values used 
are shown in Table 2.1 and were based on input from local forecasters. 
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Table 2.1. The values used in the “impossible value” QC routine. 

Wind Direction < 0° or > 360° 
Wind Speed < 0 ms or > 60 ms (116 kts) 
Wind Gust < 0 ms or > 70 ms (136 kts) 
Temperature < -10C (14°F) or > 40C (105°F) 
Dew Point Temperature < -18C (0°F) or > 35C (95°F) 
Ceiling Height  < 0 m  
Visibility  < 0 m  
Altimeter < 960 mb or > 1040 mb 
3 Hour Pressure 
Change 

< -10 mb or > 10 mb 

The second QC removed outliers in the data through a standard deviation check.  Mean and standard 
deviation values for wind speed, temperature, dew point temperature, and altimeter were calculated by hour 
and month over the 20-year POR.  Data were removed if their values were more than 10 standard 
deviations from the mean.  Ceiling, visibility, wind direction, wind gust, and 3-hour pressure change 
observations were not put through this check.  Ceiling and visibility observations encompassed a large 
range of values and any value above 0 was possible.  A wind direction average would likely be 
meaningless as wind directions changed from day to day and hour to hour.  Wind gusts did not occur 
consistently and could also be discontinuous in their values from day to day, as was also true for the 3-hour 
pressure change. 

The third and final QC was a simple temporal consistency check.  This was only done on the 
temperature, dew point temperature, and altimeter data because these variables tend to be much more 
continuous from hour to hour than the others.  Ceiling and visibility especially were found to be highly 
discontinuous from hour to hour and not good candidates for this algorithm.  As a value (V) was checked, 
the value observed one hour previous to (V-1) and one hour after (V+1) V were averaged using the equation 

Vavg = (V-1 + V+1) / 2. 

If the absolute value of the difference between Vavg and V (| Vavg - V |) was larger than a certain threshold, 
then V was removed.  The threshold difference values for each of the variables were: 

Temperature: 20 C (36°F) 
Dew Point Temperature: 20 C (36°F) 

Altimeter: 10 mb 

If a value was missing before or after the value being checked, the QC was not performed. 

The total number of data points removed by all three QC algorithms was very small.  This could be 
due to the fact that the QC algorithms were formulated to remove only the obvious gross errors in the data.  
Valid observed extremes in all data types, such as very cold temperatures in the cool season or strong 
winds in any season, were in the 20-year dataset.  The goal of the QC was to remove erroneous data while 
retaining most of the valid observations.  It is also possible that the dataset was clean, with very few 
erroneous values.  The percentages of observations removed by the three QC algorithms at each station are: 

COF: 0.01% 
DAB: 0.04% 
MCO: 0.01% 
MLB: 0.07% 
TTS: 0.01% 
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Although both VF and HF employed methods of filling in missing data, it was not done with the 
dataset in this study.  In order to fill in missing cloud cover and visibility information, VF and HF used a 
‘nearest neighbor’ algorithm that substituted the values from the nearest station.  The SMG and 45th 
Weather Squadron (45 WS) forecasters indicate that ceilings over the KSC/Cape Canaveral Air Force 
Station (CCAFS) area have been spatially discontinuous.  Given the importance of accuracy in forecasting 
for Shuttle landings, the risk in using an inaccurate value in place of a missing one was too high.  There are 
also temporal routines that fill in missing data based on past and future values such as linear interpolation 
or a spline method.  A careful examination of the TTS dataset showed that missing data tended to occur in 
blocks of several hours as opposed to just one missing hour.  The examination also showed instances of 
large differences in ceiling values from hour to hour.  These two findings reduce confidence in using 
interpolated values to replace the missing data.   

2.3. Exploratory Data Analysis 

Once the data were formatted and checked for quality, an exploratory data analysis (EDA) was 
conducted to identify characteristics such as temporal trends and climatologies, the frequency of 
occurrence of the Shuttle FR ceiling categories, and possible relationships between potential predictors and 
predictands.  The images in this section show some of the important results from the EDA. 

Figure 2.2 is a histogram showing the number of observed occurrences for all ceiling heights reported 
in the data for the entire POR.  The ceiling heights in this dataset were in discrete 30 m increments up to 
1500 m, 300 m increments from 1500 m to 9000 m, and approximately every 1500 m above that.  This 
histogram shows that there are preferred reporting heights above 900 m (~ 3000 ft) and that the data are not 
evenly distributed, in general.  Three of those preferred heights correspond to the Shuttle FR ceiling 
thresholds at 1500 m (~ 5000 ft), 2400 m (~ 8000 ft), and 3000 m (~ 10 000 ft), as indicated by the arrows 
on the graph.  The observer at the site uses all available data sources to provide a best estimate of the 
ceiling height.  Ceilometer data are available to the observers at the SLF and are treated as a prime source 
of ceiling height information.  However, like the other sources, ceilometer data are used only as a 
supplement to observer discretion and the final ceiling value is a human estimation.  The uneven 
distribution seen in Figure 2.2 is likely due to human error in estimating ceiling heights and may be part of 
the reason for the difficulty experienced in forecasting ceilings.  It may also be difficult to use such data in 
a statistical analysis where smooth theoretical distributions are assumed in many of the methods.  For 
comparison, the inset in the upper-left corner of Figure 2.2 shows the histogram of temperatures for the 
same time period, which shows a smooth distribution that is more amenable to statistical analysis. 

Figure 2.3 is a color-fill contour plot of the percent occurrence of ceilings below 8000 ft by month and 
hour of day (UTC).  This height threshold was chosen as an example since the other height thresholds 
(5000 ft and 10 000 ft) showed similar patterns.  The months on the y-axis were ordered from July to June 
so that the cool season months would be emphasized in the middle of the plot.  This produces a graph that 
clearly shows the maximum occurrences of low ceilings in the cool season.  Figure 2.3 shows that the 
highest percentage of ceilings < 8000 ft occurs during the cool season morning hours that flank the time of 
local sunrise.  For example, 30-35% of the time in December and January between the hours of 1100 and 
1400 UTC (0600 – 0900 local time), the ceiling is below 8000 ft. 
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Figure 2.2. Histogram of the number of observations for all ceiling heights reported in the 20-year POR 

of hourly surface observations at the Shuttle Landing Facility.  The total number of 
observations at 7500 m is 11 582.  The scale of the vertical axis was truncated to emphasize 
the smaller number of observations at other heights.  The inset in the upper-left corner is the 
histogram of temperatures for the same period. 
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Figure 2.3. Contour plot of the percent occurrence of ceilings < 8000 ft at the Shuttle Landing Facility by 
hour and month for the 20-year POR.  The legend at right shows the association of the colors 
with percentage ranges in intervals of 5%.  The white line indicates the approximate time of 
local sunrise at KSC. 
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Figure 2.4 is another way of looking at the data in Figure 2.3, with each line showing the values of the 
percent of occurrence of ceilings < 8000 ft for a specific month.  As expected, the cool months (October – 
March) show a higher percent of occurrence at all hours with peaks in the morning (~ 1000 – 1500 UTC) 
with a maximum of close to 35% in December.  There is a much lower percent of occurrence during the 
warm season (April – September).  Also, the warm season peaks tend to be less than 15% (April reaches 
17%), which is only slightly higher than the lowest cool season values in October and March of 
approximately 14%.  The large disparity in the number of events between the warm and cool seasons as 
shown in Figures 2.3 and 2.4 suggests that the data should be stratified by these seasons. 
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Figure 2.4. Graph showing the change in percent occurrence of ceilings < 8000 ft at the Shuttle Landing 

Facility by hour of day for each month in the 20-year POR.  The legend at right shows the 
association of the colors with each month in the year. 

2.4. Data Set Design 

After the EDA, the datasets to be used for the equation development were prepared.  This involved 
stratification by season, then separation into development (dependent) and testing (independent) datasets. 

2.4.1. Seasonal Stratification 

The EDA revealed large differences in the occurrence of low ceilings between the warm and cool 
seasons.  This could mean that different climatological processes were responsible for the creation of low 
ceilings and, therefore, the forecast equations for one season may be markedly different from those for the 
other season.  In order to obtain the greatest forecast accuracy, the data from all stations were stratified into 
cool (October-March) and warm (April-September) season datasets prior to equation development.  
Because of the relative dearth of FR threshold ceiling events in the warm season (see Figures 2.3 and 2.4), 
there were not enough events from which to develop robust relationships between the TTS ceiling 
observations and other data types.  Therefore, only the cool season data were used in the creation of the 
forecast equations. 
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2.4.2. Dependent and Independent Data Sets 

The cool season data was then separated into two more datasets known as the dependent and 
independent datasets.  The dependent dataset was used to develop the equations, and the independent 
dataset was used to test the equations.  According to WMO (1992), the dependent dataset should contain 
enough samples so that the resulting set of equations is stable, i.e. the equations maintain consistent 
forecast accuracy on different datasets.  A small dataset may not contain a representative set of events, and 
the equations developed from such a small set may show wide variations in accuracy on different datasets 
and forecasters will not have confidence in their results.  It is also desirable, in a statistical sense, that the 
events in the dependent dataset have no correlation between them.  This is not usually the case with 
meteorological data since the datasets consist of a time series of events that are serially correlated.  In 
general, according to WMO (1992), the greater the correlation between events, the smaller the amount of 
new information contributed by each event, and the larger the dependent dataset must be to create 
equations representative of the relationship between the predictors and the predictand. 

The independent dataset was needed for equation testing in order to have a more realistic view of how 
the equations would perform in operations.  It was expected that the equations would not perform as well 
on the independent data as they would with the data from which they were developed.  However, if 
performance were a great deal worse with the independent data, this would indicate that either too many 
predictors were chosen and the equations were fit too strongly to the dependent data, or the dependent 
dataset was too small. 

In order to develop stable equations, a large portion of the cool season dataset was set aside as the 
dependent dataset.  There were 19 full cool seasons in the 20-year POR, 16 of which comprised the 
dependent dataset with the other three making up the independent dataset.  Instead of choosing a 
chronological sequence of years for the independent dataset, statisticians at ENSCO, Inc. recommended 
random years be used.  This would ensure that the results with the independent data would not be 
contaminated by any climate trends, but would reflect how the equations would perform in any time 
period.  The independent cool season years were chosen using the random number generator function in 
Microsoft Excel.  In the range of cool seasons from 1978/79 to 1996/97, the cool seasons chosen for the 
independent dataset were 1979/80, 1987/88, and 1995/96, with the rest making up the dependent dataset. 
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3. Equation Development 

Equation development began after the datasets were prepared.  Equations for both the observations-
based (OBS) and persistence climatology (PCL) methods were created.  As in VF and HF, the performance 
of the OBS equations was compared against the benchmark PCL equations to determine if they improved 
the short-term ceiling forecast.  The development was done with a commercial-off-the-shelf statistical 
software package called S-PLUS (Insightful Corporation 1999).  This software package contained all of 
the functions necessary to do the entire development and testing on a PC.  Use of S-PLUS also eliminated 
the need to develop and test statistics code from scratch, saving valuable time. 

Before the equation development could take place, it was important to establish the initial, lead, and 
valid time for each equation, and determine the number of predictands.  These parameters determined how 
many equations were developed.  Then the predictors were chosen, and the predictands and predictors 
prepared for input into the S-PLUS algorithms that created the forecast equations.  This section will 
describe how these parameters were chosen along with the details of the mathematical process used in the 
creation of the equations. 

3.1. Initial, Lead, and Valid Times 

Shuttle landings occur at various times around the clock.  Therefore, the forecast equation valid times 
needed to cover the entire 24-hour period at the highest temporal resolution possible.  Standard surface 
observations were reported every hour on the hour at most stations in the datasets, with an occasional 
special report given off the hour if there was a significant change in the weather.  The special reports in the 
dataset were too few and too sporadic to allow development of equations with valid times off the hour.  
Therefore, the forecast equations developed in this study were valid for each hour of the day, given that the 
highest consistent temporal resolution in the dataset was hourly. 

The initial time for each equation was determined by the lead time.  The customers requested that the 
equations have lead times of 1-, 2-, and 3-hours.  Therefore, for each valid time there were three initial 
times: one hour, two hours, and three hours prior to the valid time. 

3.2. Predictands 

The predictands, or weather elements to be predicted, could be either continuous in which an exact 
value was predicted, or categorical in which a prediction for a specific range of ceiling heights was made.  
The difficulty in forecasting an exact ceiling value was underscored in Figure 2.2.  The distribution of 
ceiling height observations in the historical dataset was not smooth but showed a tendency to have 
observations consolidated at specific heights.  The values were estimated through human observations, not 
measured.  This may have introduced errors such as a bias to report only certain heights as evidenced in 
Figure 2.2.  Since an accurate measured value of the ceiling height was not reported in the historical 
dataset, it was impossible to create equations that would forecast the continuous ceiling height values 
accurately. 

The forecasters at SMG are interested in forecasting the probability of whether a ceiling threshold 
defined in the Shuttle FR (Table 1.1) will be violated.  This requirement and the data distribution issue seen 
in Figure 2.2 were the deciding factors for using categorical predictands of the three ceiling thresholds in 
the Shuttle FR for the SLF: < 10 000 ft, < 8000 ft, and < 5000 ft.  The specific parameter forecast would be 
the probability of a ceiling occurring within each of the FR ceiling thresholds at TTS.  In the equation 
development, the predictands were coded as binary variables in which a 1 was used if an observation 
satisfied the predictand definition and a 0 otherwise.  For example, for a ceiling observation of 7000 ft, the 
predictands < 10 000 ft and < 8000 ft would be set to 1, and the predictand < 5000 ft would be set to 0.  
Other examples are shown in Table 3.1. 
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Table 3.1. Examples of the predictand binary values used in 
the equation development.  A value of 1 means the observation 
met the threshold condition, whereas a value of 0 means the 
condition was not met. 

Predictand Category Ceiling 
Height 

Ob < 10 000 FT < 8000 FT < 5000 FT 

11 000 ft 0 0 0 
10 000 ft 0 0 0 

9000 ft 1 0 0 
8000 ft 1 0 0 
7000 ft 1 1 0 
5000 ft 1 1 0 
4000 ft 1 1 1 

3.3. Predictors 

The OBS and PCL methods each had their own set of predictors.  For the OBS method, several 
observed parameters from all the stations at the forecast initial time were considered as predictors.  For the 
PCL method, the predictors were the observation of the ceiling at the initial time and a climatological value 
for the valid time. 

3.3.1. OBS Predictors 

A vast number of predictors could have been derived from the observed data.  The predictor lists in VF 
and HF were used as starting points in this study to reduce the size of the potentially large list of possible 
predictors.  They conducted preliminary studies in order to reduce the large number of potential predictors 
while retaining the predictors best suited for ceiling and visibility forecasts.  Their final lists were very 
similar and consisted of binary thresholds for visibility, wind direction, and several cloud observations 
including ceiling height and total cloud cover, and continuous values of wind speed, temperature, dew 
point temperature, and pressure. 

The predictor lists were modified for this study by using knowledge of local meteorology and 
conducting tests to create a list of physically reasonable predictors for categorical ceiling forecasts at the 
SLF.  Previous AMU work showed that the visibility thresholds were not good predictors for cloud ceiling 
in east central Florida and were, therefore, removed from consideration.  Cloud deck height thresholds 
were added to the list.  Heights for up to four cloud decks were reported in the standard hourly 
observations, and were categorized according to the Shuttle FR.  The basic idea was that if any amount of 
clouds within a FR height category existed at the initial time, that cloud deck observation might be a good 
predictor for that ceiling threshold.  The wind direction predictors were modified to reflect the locations of 
stations relative to TTS: north (DAB), west (MCO), south (MLB and COF), and east (no stations).  The 
continuous variables were the same as in VF. 

The resulting predictor list used in this study is shown in Table 3.2.  As with the predictands, most of 
the predictors were coded as binary in which a 1 was used if an observation satisfied the binary threshold 
and a 0 otherwise.  Where the word “continuous” is seen in the table, the actual value of the variable was 
used in the equation development.  The first three predictors in the table correspond to the predictand 
categories.  One of the main conclusions in both VF and HF was that the most important predictor was the 
observation of the predictand at the initial time.   
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Table 3.2. List of potential predictors and binary thresholds used for the observations-based 
equation development.  A predictor is set equal to 1 if the observation satisfies the binary 
threshold, otherwise it is set equal to 0.  “Continuous” means that the actual value of the variable 
was used. 

Variable Binary Threshold Variable Binary Threshold 

Ceiling Height < 5000 ft Second Cloud Deck Base < 5000 ft 
Ceiling Height < 8000 ft Second Cloud Deck Base < 8000 ft 
Ceiling Height < 10 000 ft Second Cloud Deck Base < 10 000 ft 
Total Cloud Cover > 1/10 Third Cloud Deck Base < 5000 ft 
Total Cloud Cover > 5/10 Third Cloud Deck Base < 8000 ft 
Total Cloud Cover > 9/10 Third Cloud Deck Base < 10 000 ft 
Wind Direction > 315 and < 45 Fourth Cloud Deck Base < 5000 ft 
Wind Direction > 45 and < 135 Fourth Cloud Deck Base < 8000 ft 
Wind Direction > 135 and < 225 Fourth Cloud Deck Base < 10 000 ft 
Wind Direction > 225 and < 315 Wind Speed Continuous 
Precipitation Yes Temperature Continuous 
First Cloud Deck Base < 5000 ft Dew Point Temperature Continuous 
First Cloud Deck Base < 8000 ft Dew Point Depression Continuous 
First Cloud Deck Base < 10 000 ft  

3.3.2. PCL Predictors 

Forecasts from the PCL equations were used as the benchmark against which the forecasts from the 
OBS equations were tested.  Development of the PCL equations was based on the method described in VF.  
There were only two predictors for the PCL equations, which were the observation of the predictand at the 
initial time and a term representing the predictand climatology at the valid time.  The observation of the 
predictand at the initial time represented the persistence part of the equation.  A persistence forecast is one 
in which the assumption is that the ceiling will be the same at the valid time as it was at the initial time.  
The climatology term was represented by a fractional value indicating the frequency of occurrence of the 
predictand at a certain hour on a certain day.  While the persistence term was readily available from the 
observations, the climatology term had to be calculated. 

Calculation of the climatology term, called the event relative frequency (ERF), followed the procedure 
described in VF.  An ERF was calculated for each hour of the day and each day of the year, a total of 8760 
values, using the entire 20-year POR.  ERFs were calculated for each day of the cool season, each hour of 
the day, and each ceiling category threshold.  In other words, there was one ERF value per ceiling category 
for each hour of the day in each day of the cool season. 

Using ceilings < 5000 feet occurring at 1200 UTC on 1 January as a specific example, the following 
procedures were used to calculate the ERFs: 

• The equation used to calculate the ERF was a simple average given by 

)o(
n
1ERF

n

1i
i∑=

=
, 

where n is the number of possible observations and oi was 1 if the ceiling category was 
observed, 0 if it was not. 

• There were a total of n=20 1200 UTC 1 January observations of ceilings < 5000 feet in the 
20-year POR.  According to VF, this number is too small to calculate a reliable climatological 
average. 
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• To increase n, all observations of ceilings < 5000 feet at 1200 UTC from 15 days before and 
15 days after 1 January, inclusive, were used for a total of 31 days.  The new value for n, 
then, is 620 (20 years x 31 days). 

• The 620 binary observation values were added together and divided by n, according to the 
equation above. 

• This procedure was repeated for every hour of every day in the cool season. 

• With 182 days in the cool season and 24 hours/day, there were 4368 ERF values per category 
used in the development of the PCL equations.  For leap years, the 29 February values were 
calculated by averaging the 28 February and 1 March values. 

• The ERF values ranged from 0.06 at 0900 UTC in October to 0.40 at 1400 UTC in 
December. 

The result was 8760 values that could be matched with each day/hour combination in every year. 

3.4. Equations 

Equations were developed for each of the predictands at each of the lead times for each hour of the day 
(0000 to 2300 UTC) using cool season data only.  Three predictands at three lead times over 24 hours 
yielded 

3 Predictands x 3 Lead Times x 24 Hours = 216 Equations. 

A full set of equations was developed for each forecast method, OBS and PCL.  This yielded 

2 Forecast Methods x 216 Equations/Method = 432 Total Equations. 

These 432 equations would be used for every day in the cool season.  In addition, predictors for the OBS 
equations must be chosen from all predictors from all stations: 

5 Stations x 27 Predictors/Station = 135 Possible Predictors. 

It was clear that, from the large number of equations to create and the number of possible predictors 
from which to create them, a standardized automatic method of development and testing was needed.  The 
time allotted for the task did not permit development, testing, and refinement of each individual equation.  
Therefore, all equations would use the same model formulation and all OBS predictors would be selected 
using the same criteria for each individual equation. 

3.4.1. Preliminary Testing 

Tests were conducted on portions of the data to determine (1) the appropriate statistical model for both 
forecast methods and (2) the predictor selection criteria for the OBS equations.  Equations for 1- and 2-
hour forecasts valid at 1200 and 1500 UTC were used to test the different statistical models and predictor 
selection methods and determine which were best suited for TTS ceiling forecasts.  These times were 
chosen because of the higher frequency of occurrence of low ceiling events during the cool season morning 
hours (see Figure 2.3).  Testing equations built from a subset of the data containing the most events would 
likely produce the most accurate results and provide the best information from which to choose the 
appropriate methods to apply to the rest of the data. 

3.4.1.1. Statistical Models 

The candidate statistical models were multiple linear regression (MLR), as used in VF, and logistic 
regression (LGR), as used in HF.  The equations were to calculate the probability of occurrence of the 
predictands using binary values for the predictands and most of the predictors.  Wilks (1995) identifies two 
regression methods as viable options.  The first is called Regression Estimation of Event Probabilities 
(REEP).  REEP is simply MLR that creates a line defining the relationship between the binary predictors 
and predictand.  It is in the form 



 15

P = Co + C1x1 + C2x2 + … Cnxn, 

where P is the forecast probability, Cn are the coefficients, and xn are the predictors.  This method produces 
the smallest error between the observations and the line for the predictions given a set of predictors.  It is 
the least computationally demanding of the two methods, but in theory it can produce impossible 
probabilities that are less than 0 or greater than 1.  A more desirable model for probability forecasts of 
binary predictands is LGR, which uses a nonlinear equation of the form 

P = 1 / ( 1 + exp[Co + C1x1 + C2x2 + … Cnxn] ) 

to calculate a curve.  Like REEP, it also minimizes the error between the curve and the observations.  
Unlike REEP, it cannot calculate probabilities less than 0 or greater than 1.  Wilks states that LGR is the 
theoretically preferred method over REEP when the predictands are binary, such as in this study.  Figure 
3.1 shows a hypothetical example of the difference between REEP and LGR.  The curved fit appears to 
reduce the error further from that of the linear fit.  This indicates that LGR might produce a more accurate 
forecast than REEP. 
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Figure 3.1. A hypothetical example of the difference between Regression Estimation of Event 
Probabilities (REEP) and logistic regression (LGR).  The dashed line represents an estimate 
of the best fit from the REEP and the curve is an estimate of the fit from the LGR. 

3.4.1.2. Predictor Selection 

A forward stepwise regression technique was used with the dependent dataset to choose the best 
predictors for the OBS equations.  This procedure started by choosing the predictor that accounted for the 
largest percentage of variance between the predictor and predictand.  In subsequent steps, it tested the 
remaining predictors and chose them one at a time based on which one accounted for the most variance 
when combined with the previously chosen predictors.  If left unchecked, the stepwise technique would 
have found a relationship between the predictand and every predictor in the set in an effort to explain as 
much of the variance as possible.  This would have caused two problems.  The obvious problem was that it 
would be cumbersome and impractical to enter 135 values for the predictors in an operational setting.  The 
most critical problem was that, with so many predictors, an excellent fit could be achieved on the 
dependent data, but the relationship would not be optimal for the independent or any other dataset and 
would not produce the best-performing forecasts in an operational setting.  This is known as over-fitting 
the equation to the data.  Therefore, a balance had to be achieved in which enough physically meaningful 
predictors were chosen to define a proper relationship between the predictand and predictors, yet not so 
many that the relationship would only be valid for the dependent dataset. 
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The S-PLUS software allows the designation of an F-value (Wilks 1995) to stop adding more 
predictors in the forward stepwise regression.  The F-value is a ratio given by the equation 

F = MSR/MSE. 

MSR is the mean of the regression sum of squares given by 

( )∑ −=
=

n

1i

2
i of

df
1MSR , 

where df is the degrees of freedom, n is the number of observations in the dataset, fi is the prediction, and 
o  is the average of the predictand observations.  The MSE is given by 

2
i

n

1i
i )fo(

n
1MSE −∑=

=
, 

where oi is the observation corresponding to the fi prediction.  As predictors are added to the equation, 
more of the variance is explained causing MSR to increase.  The value of df is the difference between n 
and the number of predictors in the equations.  Therefore it decreases as the number of predictors 
increases.  As MSR increases the forecast error decreases causing MSE to decrease.  This combination 
causes F to increase as predictors are added to the equation.  The F-value designates the maximum F to be 
achieved as predictors are added to the equation.  If a predictor causes F to exceed the predetermined F-
value, it is not added to the equation and the forward stepwise procedure is stopped.  Since HF used the 
same software, their value of 10 for F was used.  This value was sufficient to narrow down the list of 
possible predictors from 135 to at most 20 physically relevant variables per equation that were ranked from 
the most to the least important in terms of explaining the linear relationship. 

A quantitative examination of the predictors chosen in the stepwise procedure indicated the possibility 
that some of the less relevant predictors chosen later in the algorithm may not have been physically 
reasonable for the prediction and might not add much, if any, predictive value to the equation.  Therefore, 
another technique to reduce the predictor list further was employed.  One of the values output from the 
regression algorithm was the percentage of the variance in the predictor data accounted for by the 
regression, R2, also known as the coefficient of determination.  In a perfect prediction, this value would be 
100%.  Wilks (1995) suggested a practical cutoff would be when none of the remaining predictors increase 
the R2 value by more than a specified amount.  This method was tested by adding the predictors chosen by 
stepwise one at a time until the increase in R2 was less than 1%, 0.5%, and 0.05%. 

The graph in Figure 3.2 shows the R2 calculations for the predictors for the 2-hour forecast valid at 
1200 UTC of ceilings < 10 000 feet.  The seven predictors along the axis are in the order chosen by the 
stepwise regression using F = 10 for this particular forecast.  The first three letters in each predictor name 
represent the station from which the observation was taken.  The XXX.C.10000 predictors represent the 
binary observations of ceilings < 10 000 feet at the specified station, DAB.C.5000 is the same for ceilings 
of < 5000 feet at DAB, TTS.CD1.10000 is the binary predictor for whether the first cloud deck was < 10 
000 feet at TTS, and TTS.CV.9.10 is the binary predictor for 9/10 or greater cloud cover at TTS.  The left 
y-axis and the solid line represent the R2 values as each predictor was added, and the right y-axis and 
dashed line represents the amount R2 was increased by adding the associated predictor.  This graph shows 
that if the 1% cutoff was used, only the first 3 predictors would be in the final equation.  If 0.5% was used, 
the last two predictors would have been left out, and if 0.05% was used all predictors would be part of the 
equation.  It should be noted that this is a specific example and not completely representative of all the 
equations.  There were variations in the number of predictors chosen and their associated R2 values and 
differences. 
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Figure 3.2. R-squared (R2) values for the 2-hour forecast valid at 1200 UTC for a ceiling of < 10 000 feet 

at TTS.  The predictors along the x-axis are in order according to the amount of variance 
explained as each predictor was added to the equation.  The left y-axis is the value of the 
variance, R2, as each predictor is added to the equation, and the right y-axis is the amount of 
increase in R2 caused by adding the associated predictor. 

3.4.1.3. Test Results 

As stated earlier, equations for 1- and 2-hour forecasts valid at 1200 and 1500 UTC for each of the 
ceiling categories were developed to conduct the tests.  The goal was to find the best combination of 
statistical model and predictor cutoff method in order to decrease the mean square error (MSE) of the 
forecasts.  The MSE is given by the equation 

2
i

n

1i
i )fo(

n
1MSE −∑=

=
, 

where n is the number of forecasts, oi is the binary ceiling category observation (0 or 1), and fi is the 
probability forecast (0 ≤ f ≤ 1) given by the equation.  If MSE = 0, the forecast is considered “perfect”. 

First, F = 10 was used to narrow down the list and rank the predictors from the most to least important, 
then the three R2 cutoff criteria were imposed to create three predictor sets.  Then, REEP and LGR forecast 
equations for each of the Shuttle FR ceiling categories were developed using these predictor sets for the 
OBS method and the PCL method.  Table 3.3 shows a summary of the equations that were developed for 
testing.  An N/A appears in the third column for PCL because that method always used the same two 
predictors: the binary ceiling observation at the initial time and a term for the ceiling climatology at the 
valid time.  Predictions were made with both methods using observations from the dependent, then 
independent datasets.  They were tested on the dependent data first to ensure adequate performance on the 
dataset from which they were developed.  If they performed poorly on the dependent dataset, they would 
not likely perform well on any data. 
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Table 3.3. A summary of the parameters in the development of the equations used to 
test which statistical model and predictor cutoff method were most appropriate for the 
full set of equations.  The total number of OBS and PCL equations developed for the 
testing are shown in the last column.  The number of equations includes those for each of 
the three Shuttle FR binary ceiling categories. 

Forecast 
Method 

Initial Time:  Valid Time 
(UTC) 

R2 Cutoffs 
(F = 10) 

Statistical 
Models 

Total # 
Equation

s 

OBS 1000, 1100:  1200 
1300, 1400:  1500 

1%, 0.5%, 0.05% REEP, LGR 72 

PCL 1000, 1100:  1200 
1300, 1400:  1500 

N/A REEP, LGR 24 

After all the predictions were made, the MSE value resulting from each of the equations was 
calculated.  None of the MSEs were 0, but were all on the order of 0.1.  The lowest MSE values calculated 
from forecasts made using the dependent data were from the REEP model using 0.5% and 0.05% as the R2 
cutoffs, but their values were very similar at approximately 0.08.  It appeared from this result that the extra 
predictors allowed by the smaller cutoff did not add any predictive value to the equations.  This was 
confirmed by the results using the independent data.  The lowest MSEs from the independent data were 
from the REEP model using 0.5% as the R2 cutoff.  The extra predictors allowed by the 0.05% cutoff 
appeared to cause some over-fitting of the dependent data. 

The LGR model was expected to produce the lowest MSEs because it is able to fit the predictors to the 
predictand in a non-linear fashion (Section 3.4.1.1, Figure 3.1).  This was not the case in these preliminary 
tests as the MSEs from the LGR equations were higher in every case when compared to the MSEs from the 
corresponding REEP equations.  Another reason to use LGR was to avoid probability predictions that were 
<0 or >1, as can be produced by REEP.  No such probabilities were produced by the REEP equations in the 
preliminary testing.  Wilks states that REEP rarely produces such erroneous probabilities in an operational 
setting when there are enough predictors in the forecast equation.  Based on these preliminary tests, the 
model used for the OBS and PCL equations was REEP and the predictors were chosen for the OBS 
equations using the 0.5% R2 cutoff. 

3.4.2. OBS Equation Development 

The development of the 216 OBS equations was done using an automated procedure.  Nonetheless, 
output from the procedure was monitored closely to ensure that reasonable predictors were chosen for each 
equation.  Important characteristics of the equations were: 

• The number of predictors in each equation ranged from 1 to 9, with an average of 4 to 5 
predictors per equation. 

• In general, the number of predictors per equation increased with increasing lead time. 

• In 212 of the 216, the predictor that explained most of the variance in the data was the 
observation of the predictand at the initial time, indicating that persistence was an important 
predictor.  For example, for the 1-hour forecast of TTS ceilings < 8000 feet valid at 1200 
UTC, the 1100 UTC observation of TTS ceilings < 8000 feet explained most of the variance 
in the data.  This finding was consistent with VF and HF. 

• The binary ceiling observations at DAB were most often chosen as predictors after the 
observation of the predictand at the initial time, followed by the binary observations of ceiling 
from the other stations. 

• The binary total cloud cover and cloud deck predictors at TTS and the other stations were 
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next in importance after the ceiling observations. 

• Precipitation occurrence, wind direction, and the rest of the continuous predictors were rarely 
chosen, and were of low importance in the equation when they were. 

• The amount of variance explained by the predictors (R2), was 55-60% for the 1-hour 
forecasts, 45-50% for the 2-hour forecasts, and 35-40% for the 3-hour forecasts.  Within each 
lead-time category, the equations for ceilings < 5000 feet had the lowest R2 values, and the 
equations for ceilings < 10 000 feet had the highest values. 

• A large percentage of R2 was explained by the observation of the predictand at the initial 
time, with the other predictors only explaining an additional 5-10%, indicating further the 
importance of persistence. 

3.4.3. PCL Equation Development 

The development of the PCL equations was less complicated than the OBS equations because there 
were only two predictors: the binary observation of the predictand at the initial time and a climatological 
term at the valid time.  The ERFs were incorporated into the dependent dataset, and PCL equations were 
developed using the REEP statistical model.  Important characteristics of the equations were: 

• In all of the 1-hour equations, the predictor that explained most of the variance in the data 
was the observation of the predictand at the initial time, similar to that of the OBS equations. 

• In the 2-hour equations, the ERF value at the valid time became increasingly important and 
was occasionally chosen as the predictor that explained most of the variance, likely indicating 
the decreasing contribution of persistence as lead time increases. 

• In more than half of the 3-hour equations, the predictor that explained most of the variance in 
the data was the ERF value, again likely indicating the decreasing contribution of persistence 
at longer lead times. 

• The amount of variance explained by the two predictors (R2), was 5-10% lower than that of 
the corresponding OBS equations.  This was the first indication that the OBS equations would 
produce more accurate forecasts since they explained more of the variance. 

3.4.4. Number of Events 

One other important characteristic of the OBS and PCL equations had to be considered before 
proceeding to testing with dependent and independent data.  The WMO (1992) recommends that at least 
250 events of the predictand should be in the dependent dataset in order for stable relationships to be 
defined by the equations.  A predictand event occurs when the binary value is equal to 1.  All of the 
predictand events from the dependent dataset were counted and stratified according to lead time, Shuttle 
FR, and hour.  The results are shown in the graphs of Figure 3.3. 

A cursory examination of all three graphs shows that each equation was developed from a dataset that 
had more than 300 predictand events, over 50 events more than recommended by WMO (1992).  The 
number of events increases with ceiling height threshold.  This is because all ceilings below a threshold 
were used in the equation development.  For example, for the FR category < 10 000 feet, all ceilings less 
than 10 000 feet were used in equation development, even those below 8000 feet and 5000 feet.  There is 
also a temporal trend with a minimum in the late evening/early morning hours (0300 – 0400 UTC), rising 
gradually to ~1000 UTC, then a large increase to 1200 UTC near sunrise, slight decrease through the 
morning hours then rising through the afternoon through evening.  Regardless of the variations, all 
equations were developed using a sufficient number of events to establish a stable relationship between the 
predictand and the predictors. 
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Events in 2-Hour Equation Development
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Events in 3-Hour Equation Development
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Figure 3.3. The number of predictand events used in the development of the observations-based 

equations for top) 1-hour forecasts, middle) 2-hour forecasts, and bottom) 3-hour forecasts.  
Within each graph, values are given for each predictand category and hour. 
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4. Tests with Dependent and Independent Datasets 

After the equations were developed, they were used to make probability forecasts with every record in 
the dependent and independent datasets.  Comparison testing between the OBS and PCL equation forecasts 
was done to determine whether the OBS method produced more accurate forecasts than the PCL method.  
The tests with the independent data would most likely reveal the operational performance of the equations, 
which was the main goal of the task, but tests with the dependent dataset were also done for two reasons.  
First, if the equations performed poorly on the dataset from which they were developed, they could not be 
relied upon to produce accurate forecasts with the independent or any other dataset.  Second, the dependent 
test results were compared to those using the independent dataset to ensure comparable equation 
performance.  It was expected that the equations would perform better on the dependent data than on the 
independent data (Wilks 1995), but a large degradation in performance with the independent data could 
mean that the equations had been overfit. 

4.1. Equation Comparison 

The first test done was to determine the relative skill of the OBS equations using the PCL forecasts as 
the benchmark.  The MSE values for the OBS and PCL predictions were calculated using the equation in 
Section 3.4.1.3 and were used in the following equation: 

100
)EMSEMS(

)EMSEMS(PI ×
−

−
=

pclperfect

pclobs , 

where PI is the percent improvement of the OBS equations over the PCL equations, MSEobs is the MSE for 
the OBS equations, MSEpcl is the MSE for the PCL equations, and MSEperfect is the MSE for a perfect 
forecast, which is 0.  If PI is positive, it indicates an improvement of the OBS method over the PCL 
method.  A negative PI would indicate that the PCL method produces a more accurate forecast.  The PI 
values were calculated for all 216 equations from both methods. 

The PI values for both dependent and independent datasets were examined and compared in detail.  
For brevity, the mean of the PI values from the 24 equations valid from 0000 to 2300 UTC were averaged 
by lead time, ceiling category, and dataset, and are shown in Table 4.1.  The results from using the 
dependent and independent datasets are side-by-side for easy comparison.  The most important result is 
that all PI values were positive from both datasets, indicating that the OBS method produces improved 
probability forecasts over the PCL method.  Another important result is that the values from using the 
independent dataset were similar, albeit slightly smaller, than those from using the dependent dataset.  This 
result indicates that the dependent dataset was large enough to develop stable equations and that the 
equations were not overfit to the dependent data.  In general, the PI values increase with increasing lead 
time.  This may indicate the decreasing importance of persistence and an increasing importance of 
observations from the surrounding stations as the lead time increases.  The PI values also decrease with 
decreasing ceiling height category. 

Table 4.1. Average values of the percent improvement (PI) of the OBS method 
over the PCL method for the 24 equations, valid 0000 to 2300 UTC, by lead time, 
dataset, and ceiling category. 

< 10 000 feet < 8000 feet < 5000 feet Lead 
Time DEP INDEP DEP INDEP DEP INDEP 

1-Hour 12.05 11.89 11.04 10.03 10.15 8.75 
2-Hour 15.99 15.27 14.27 13.45 13.31 11.94 
3-Hour 15.95 14.88 14.21 13.62 13.75 13.44 
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Since the results from testing with the independent data would be most indicative of the expected 
operational performance, they are shown in detail in Figures 4.1 – 4.3.  Over 500 observations were 
available in the independent dataset to calculate the PI values.  The hour-to-hour variance seen in Figures 
4.1 – 4.3 may be an artifact of the relatively small sample size used in the calculations.  The variance in all 
three traces is smaller for the dependent dataset.  This could be due to the fact that the dependent dataset 
has almost 3000 observations per equation, or due to the better fit achieved on the dependent dataset.  As 
more data are collected over time, this variance may decrease. 

The PI values for each of the equations that produced probability forecasts for ceilings < 10 000 feet 
are shown in Figure 4.1.  The most important aspect of this graph, as with Table 4.1, is that all the values 
were positive, indicating that the OBS equations produced more accurate forecasts than the PCL equations.  
The values tended to increase with lead time, and the 3-hour lead time appeared to produce a larger 
variance in skill over 24 hours.  No diurnal trend was apparent for any of the equations. 
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Figure 4.1. Percent improvement in MSE of the OBS equations over the PCL equations for forecasts of 

ceilings < 10 000 feet at each lead time and hour of the day for the cool season.  Each line 
represents the PI values for the three lead times: blue) 1-hour forecasts, pink) 2-hour 
forecasts, and yellow) 3-hour forecasts. 
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Figure 4.2 is analogous to Figure 4.1 except that it shows the PI values for the equations that produced 
forecasts for ceilings < 8000 feet.  Again, all the values were positive, indicating improved performance by 
the OBS equations, they tended to increase with lead time, and no diurnal trend was apparent. 

% Improvement in MSE for Ceiling Forecasts < 8000 feet

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

00Z 01Z 02Z 03Z 04Z 05Z 06Z 07Z 08Z 09Z 10Z 11Z 12Z 13Z 14Z 15Z 16Z 17Z 18Z 19Z 20Z 21Z 22Z 23Z

Valid Forecast Time

%
 Im

pr
ov

em
en

t

1-Hour
2-Hour
3-Hour

 
Figure 4.2. Percent improvement in MSE of the OBS equations over the PCL equations for forecasts of 

ceilings < 8000 feet at each lead time and hour of the day for the cool season.  Each line 
represents the PI values for the three lead times: blue) 1-hour forecasts, pink) 2-hour 
forecasts, and yellow) 3-hour forecasts. 
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Figure 4.3 shows the PI values for each of the equations that produced forecasts for ceilings < 5000 
feet.  All except one of the values were positive for this set of equations, and another was close to 0.  The 
1-hour OBS equations valid at 0200 and 2000 UTC produced PI values of 0.2 and –0.6, respectively.  
Although the second was negative, both values were close to 0 indicating that the OBS and PCL equations 
for those times performed almost equally.  Otherwise, the values show traits similar to those of the other 
two graphs. 
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Figure 4.3. Percent improvement in MSE of the OBS equations over the PCL equations for forecasts of 

ceilings < 5000 feet at each lead time and hour of the day for the cool season.  Each line 
represents the PI values for the three lead times: blue) 1-hour forecasts, pink) 2-hour 
forecasts, and yellow) 3-hour forecasts. 

The corresponding graphs for the dependent data (not shown) show less variability from hour to hour 
and no negative values or values very close to 0.  It is important to note that the MSE and subsequent PI 
values for the independent dataset were calculated with 3 cool seasons compared to 16 cool seasons in the 
dependent dataset.  As the equations are used in cool-season operations and more data on equation 
performance is collected, use of a larger dataset in calculating MSEs may result in more smooth graphs of 
hourly PI values. 

4.2. Hypothesis Testing 

While it was important to show that the OBS equations produce improved forecasts over that of the 
PCL equations, it was also important to know whether that improvement was statistically significant.  
Statistical significance was determined through the use of hypothesis testing.  A null hypothesis was 
defined first, then the testing determined whether that hypothesis could be rejected.  For this study, the null 
hypothesis was that the mean of the differences between the OBS and PCL MSE values was 0, which 
would indicate that the OBS equation improvement was not significant and that use of the PCL equations 
would produce forecasts as accurate as the OBS equations. 

Hypothesis tests are broadly classified into parametric and nonparametric tests.  A parametric test is 
used when the data used in the test are represented by a known theoretical distribution, such as Gaussian.  
A nonparametric test does not require the data to be in any particular distribution.  In order to choose an 
appropriate test, the MSE differences were calculated by subtracting PCL MSEs from their corresponding 
OBS MSEs and the distributions of the differences were examined by lead time and ceiling category.  
Figure 4.4 shows the distribution of the 24 MSE differences for 1-hour forecasts of ceilings < 5000 feet, 
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and Figure 4.5 shows the distribution of the 24 MSE differences for 2-hour forecasts of ceilings < 8000 
feet.  Very few of the distributions were theoretical like the Gaussian distribution in Figure 4.4.  
Distributions that did not bear similarity to any theoretical distribution like that in Figure 4.5 were more the 
norm. 

It is important to note here that most of the differences were negative, indicating that the OBS MSEs 
were smaller than the PCL MSEs.  This re-confirms the previous finding that the OBS equations produce 
more accurate forecasts than the PCL equations. 

Distribution of  Differences between the OBS and PCL MSEs for 1-Hour 
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Figure 4.4. Distribution of differences between the OBS and PCL MSE values for the 24 hourly 

equations for 1-hour forecasts of ceilings < 5000 feet.  The value under each bin represents 
the upper bound of that bin’s range. 

Distribution of Differences between the OBS and PCL MSEs for 2-Hour 
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Figure 4.5. Distribution of differences between the OBS and PCL MSE values for the 24 hourly 

equations for 2-hour forecasts of ceilings < 8000 feet.  The value under each bin represents 
the upper bound of that bin’s range. 
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Given the inconsistencies in the distributions and their non-similarity to any theoretical distributions, a 
nonparametric test called the Wilcoxon Signed Rank test (Wilks 1995, Insightful Corp. 1999) was chosen 
to determine statistical significance.  This test calculated the difference between corresponding pairs of 
OBS and PCL MSE values and used these differences to determine if the mean of the differences was not 
equal to 0 (Wilks 1995).  The critical output value from the test was the p-value.  The p-value represents 
the probability of error involved in accepting that the difference between the two MSEs is valid (Statsoft, 
Inc. 2001).  Put another way, it represents the likelihood that the difference is due to chance (Sheskin 
1997).  The smaller the p-value, the less likely the difference is due to chance and the more probable that 
the difference is significant.  The common convention is to use a p-value of 0.05 as the threshold value to 
accept or reject the null hypothesis.  This is interpreted as having 95% confidence that the mean of the 
differences is not equal to 0.  One-tailed tests were performed that would determine whether or not the 
OBS MSEs were significantly less than the PCL MSEs.  A two-tailed test would only determine if the 
MSEs were significantly different ignoring whether one set of MSEs were greater or lesser than the other.  
Since it was important to show that the OBS MSEs were less than the PCL MSEs, this one-tailed test was 
employed. 

A total of nine tests were conducted using the MSE values generated from forecasts with the 
independent dataset.  The corresponding OBS and PCL MSE values from the 24 valid times in each lead 
time/ceiling category group were input to the algorithm.  All nine p-values were only slightly larger than 0, 
on the order of between 1e-7 to 1e-8.  The smallness of the p-value suggested that the null hypothesis, 
which was that the mean of the differences between the OBS and PCL MSEs was 0, could be rejected with 
greater than 99% confidence.  The alternative hypothesis, that the OBS MSEs were significantly less than 
the PCL MSEs, was accepted with the same confidence.  Therefore, the improvement in forecast accuracy 
by the OBS equations over the PCL equations was statistically significant. 

4.3. Equation Performance 

The information in Sections 4.1 and 4.2 showed that the OBS equations produced an improvement 
over the PCL method and that the improvement was statistically significant.  This answered the important 
question of whether the addition of data from surrounding stations in the development of the equations 
improves the short-term ceiling forecast at TTS.  However, PI is a relative measure of performance and 
does not indicate the absolute performance of the OBS equations.  If the PCL method produced highly 
inaccurate forecasts to begin with, the OBS equation improvement may not be meaningful.  Therefore, 
another important question to answer was whether the OBS equations actually produced useful forecasts. 

Two scores were used to help determine the absolute performance of the OBS equations.  The first 
was the probability of detection (POD), which is the fraction of times an event occurred when it was 
forecast to occur.  The second was the false alarm rate (FAR), which is the fraction of times an event did 
not occur when it was forecast to occur.  The POD and FAR for perfect forecasts is 1 and 0, respectively, 
and were calculated using the equations in Figure 4.6.  They were computed using the values from a 
standard contingency table, as shown in Figure 4.6 (Wilks 1995).  The observations were binary, 1 for Yes 
and 0 for No and could be incorporated easily into the table.  However, the forecasts were probability 
values between 0 and 1, inclusive, not binary like the observations.  In order to input the forecasts into the 
contingency table, a forecast probability value of 0.5 was chosen as the boundary between Yes and No 
forecasts.  Values ≥ 0.5 were considered Yes forecasts and those < 0.5 were No forecasts.  The 
contingency table was filled out and the POD and FAR calculated for all 216 OBS forecasts created with 
the dependent and independent datasets. 
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Figure 4.6. The standard 2 x 2 contingency table used in calculating several measures of the accuracy of 
binary forecasts.  Each letter represents the number of times a) an event was forecast and 
observed, b) an event was forecast but not observed, c) an event was not forecast but 
observed, and d) an event was not forecast and not observed.  The equations for the two 
accuracy measures, probability of detection (POD) and false alarm rate (FAR), are shown. 

The POD and FAR values for the 24 equations in each lead time/ceiling category were averaged (as in 
Table 4.1) and are shown in Table 4.2.  More accurate forecasts would maximize POD and minimize FAR.  
In general, the POD values were much larger than the FAR values, which was consistent with good 
performance.  The values for the dependent and independent dataset were similar, although slightly better 
for the independent data.  This re-confirms that the equations were not overfit to the dependent dataset 
from which they were developed.  The POD values decreased rapidly with lead time in each ceiling 
category and dataset and decreased slightly with decreasing ceiling height category value.  Conversely, the 
FAR values increased rapidly with lead time in each ceiling category and dataset, and increased with 
decreasing ceiling height category.  More specifically, the 1-hour equations produced PODs above 0.8 and 
FARs below 0.2 using the independent data, which indicated that equations with this lead time were 
relatively accurate.  The values for the other two lead times deteriorated substantially.  The POD values 
were smaller and the FAR values were larger. 

Table 4.2. The POD and FAR scores of the OBS forecasts using the dependent and 
independent datasets.  The values are averaged for the 24 valid times in each ceiling 
height/lead time category. 

< 10 000 feet < 8000 feet < 5000 feet Lead Time 
by Score DEP INDEP DEP INDEP DEP INDEP 

POD 
1-Hour 0.81 0.83 0.80 0.83 0.76 0.80 
2-Hour 0.69 0.73 0.66 0.70 0.61 0.65 
3-Hour 0.62 0.67 0.57 0.63 0.49 0.54 

FAR 
1-Hour 0.18 0.16 0.20 0.17 0.23 0.18 
2-Hour 0.23 0.21 0.25 0.23 0.28 0.24 
3-Hour 0.27 0.25 0.29 0.27 0.30 0.27 

The all-around degradation in performance with increasing lead time and decreasing ceiling height 
may be caused by other meteorological phenomena not contained in the datasets.  As lead time increases, 
persistence becomes less important and it appears that the observations from the surrounding stations did 
not completely make up the difference in performance.  The degradation in performance with decreasing 
ceiling height was very small but noticeable.  It is possible that processes causing lower ceiling heights 
were not accounted for in the surface METAR data, such as an elevated cool and/or moist layer that could 
only be sensed by a rawinsonde. 

4.4. Probability Cutoff for Yes/No Forecasts 

The use of 0.5 as the probability cutoff between Yes/No forecasts produced POD and FAR scores that 
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indicated good forecast accuracy.  The appropriate value for operations, however, would depend on 
whether the user wished to maximize POD or minimize FAR.  To assist in this decision, contingency tables 
were filled out for 11 cutoff values from 0 to 1 in 0.1 increments, inclusive.  The POD and FAR scores 
were calculated from these tables and plotted in Figure 4.7.  These were calculated from forecasts using the 
independent dataset only since equation performance between the two datasets was similar.  The values 
plotted are averaged over valid time and ceiling height category, resulting in a mean value for each lead 
time.  All POD and FAR values decreased with increasing probability cutoff value.  As stated earlier, the 
1-hour forecasts produced the highest POD and lowest FAR values.  The POD values decreased slowly 
from 1 at the 0.0 probability cutoff to 0.83 at the 0.4 cutoff, remained constant through 0.5 and dropped 
rapidly after the 0.6 cutoff.  The FAR values also decreased, but did so more rapidly from the 0.0 
probability cutoff through the 0.4 cutoff.  They remained somewhat constant through the 0.6 cutoff and 
decreased slowly thereafter.  The values for the other two lead time categories decreased similarly, 
although in a more linear fashion. 
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Figure 4.7. The average POD and FAR values for the three lead times at each probability cutoff using the 

independent dataset.  The bold lines represent the 1-hour forecast values, the medium-weight 
lines represent the 2-hour forecast values, and the light-weight lines represent the 3-hour 
forecast values.  The POD values are denoted by filled markers and the FAR values are 
denoted by unfilled markers. 
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While the POD and FAR values in Figure 4.7 were useful in determining equation performance for 
different probability cutoff values, other measures of accuracy and skill were needed to determine an 
appropriate cutoff value or range of values.  Therefore, four other measures were calculated using the 
contingency table described in Figure 4.6.  Wilks (1995) recommended using the threat score (TS) and bias 
(B) ratio as good indicators of the appropriate cutoff value.  The TS is the correct number of Yes forecasts 
divided by the total number of times the event was either forecast and/or observed, which is the percent of 
correct Yes forecasts.  The best TS is 1 and the worst is 0.  The B ratio is the ratio of the number of Yes 
forecasts to the number of Yes observations.  An unbiased forecast has B=1.  If B > 1 the ceiling category 
was forecast more often than observed, which is overforecasting.  If B < 1, the ceiling category was 
forecast less often than observed, which is underforecasting.  When choosing a probability cutoff value, 
Wilks (1995) suggests choosing the probability where TS is maximized and/or where B=1.  These two 
scores are calculated as (see Figure 4.6 for the definitions of a, b, and c): 

cba
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+

= . 

The other two measures employed to help determine the best probability cutoff were the Hit Rate (HR) 
and Kuipers Skill Score (KSS) (Wilks 1995).  They were calculated to help narrow down or confirm the 
probability cutoff values chosen by the TS and B scores.  Where the TS is the percent of correct Yes 
forecasts, the HR is the percent of all correct forecasts, Yes and No.  The best HR is 1 and the worst is 0.  
The KSS indicates whether the forecast is better than, equal to, or worse than random forecasting.  A 
perfect forecast is indicated by KSS = 1, a forecast similar to a random forecast is indicated by KSS = 0, 
and KSS < 0 indicates a forecast that is worse than a random forecast.  These two scores are calculated as 
(see Figure 4.6 for the definitions of a, b, c, and d): 
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Figures 4.8 – 4.10 show the values of these scores for each lead time using the independent dataset.  
The values at each valid time in each ceiling category were similar, but were not similar among lead times.  
Therefore, the values at each valid time in each ceiling category were averaged, resulting in a mean value 
for each lead time.  The gridline at Score Value = 1 is bold in each chart to emphasize the location where B 
= 1.  To help analyze the Wilks (1995) method of determining the probability cutoff, the B and TS curves 
are bold. 

Figure 4.8 shows the average values of the four measures for the 1-hour lead time.  The TS was 
maximized between the probability values of 0.4 and 0.5, and B =1 at the same location.  The value of TS 
at the maximum was 0.7, indicating 70% correct Yes forecasts when using a probability cutoff between 0.4 
and 0.5.  The co-location of B = 1 and the TS maximum indicated that using a probability value between 
0.4 and 0.5 as the cutoff would produce the most accurate forecasts.  This was confirmed by the HR and 
KSS scores.  The HR maximum was 0.9 at the 0.5 probability value indicating that 90% of the forecasts 
were correct, and the KSS maximum was 0.76 at the 0.4 probability value.  A positive KSS value close to 1 
indicated that these forecasts were much more accurate than random forecasts. 
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Skill Measures for the 1-Hour Lead Time
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Figure 4.8. The B, HR, KSS, and TS values for the 1-hour lead time.  The gridline for Score Value = 1 is 

bold to emphasize the location where B = 1, and the B and TS curves are bold since they are 
used to determine the appropriate cutoff value according to Wilks (1995).  The scale of the 
vertical axis was truncated to emphasize the smaller values of the other skill and accuracy 
measures.  The maximum B value was 3.4 at probability cutoff 0.0. 

Figure 4.9 shows the average values of the four measures for the 2-hour lead time.  The TS was 
maximized at 0.4 and B = 1 between 0.4 and 0.5, but closer to 0.4.  The value of TS at the maximum was 
0.58, indicating 58% correct Yes forecasts, less than that for the 1-hour forecasts.  The HR maximum was 
0.85 at the 0.5 probability value indicating that 85% of the forecasts were correct, and the KSS maximum 
was 0.65 at the 0.3 probability value.  The positive KSS value indicated that these forecasts were much 
more accurate than random forecasts.  The best probability cutoff value appeared to be less for the 2-hour 
lead time than the 1-hour lead time, likely close to 0.4. 
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Skill Measures for the 2-Hour Lead Time
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Figure 4.9. The B, HR, KSS, and TS values for the 2-hour lead time.  The gridline at Score Value = 1 is 

bold to emphasize the location where B = 1, and the B and TS curves are bold since they are 
used to determine the appropriate cutoff value according to Wilks (1995).  The scale of the 
vertical axis was truncated to emphasize the smaller values of the other skill and accuracy 
measures.  The maximum B value was 3.5 at probability cutoff 0.0. 

Figure 4.10 shows the average values of the four measures for the 3-hour lead time.  As for the 2-hour 
forecasts, the TS was maximized at 0.4 and B = 1 between 0.4 and 0.5, but closer to 0.4.  The value of TS 
at the maximum was 0.53, indicating 53% correct Yes forecasts, less than that for the 1- and 2-hour 
forecasts.  The HR maximum was 0.82 at the 0.5 probability value indicating that 82% of the forecasts 
were correct, and the KSS maximum was 0.58 at the 0.3 probability value.  The positive KSS value 
indicated that these forecasts were more accurate than random forecasts.  The best probability cutoff value 
appeared to be similar to, although slightly smaller than, the 2-hour lead time at 0.4. 
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Skill Measures for the 3-Hour Lead Time
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Figure 4.10. The B, HR, KSS, and TS values for the 3-hour lead time.  The gridline at Score Value = 1 is 

bold to emphasize the location where B = 1, and the B and TS curves are bold since they are 
used to determine the appropriate cutoff value according to Wilks (1995).  The scale of the 
vertical axis was truncated to emphasize the smaller values of the other skill and accuracy 
measures.  The maximum B value was 3.5 at probability cutoff 0.0. 

An analysis of the values in Figures 4.8 – 4.10 indicated that the appropriate probability cutoff values 
decreased with lead time, but tended to be between 0.4 and 0.5.  Since these values were calculated from 
forecasts using the independent data, they are good indicator of the appropriate probability cutoff values to 
be used in operations.  Ultimately, operational use of the equations will determine the most appropriate 
cutoff values, but these tests provide a starting point. 
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5. Conclusions 

Following procedures outlined in the literature, the AMU developed observations-based (OBS) short-
term statistical forecast equations for cloud ceiling at the SLF that outperform persistence climatology 
(PCL).  Hourly surface observations from TTS and surrounding stations during the cool season in east-
central Florida were used to develop and test the equations.  There were 16 cool seasons in the dependent 
dataset from which the equations were developed, and 3 cool seasons in the independent data set on which 
the equations were tested.  The equations calculated probability forecasts for the three ceiling categories in 
the Shuttle FR at 1-, 2-, and 3-hour lead times for each hour of the day in the cool season (October – 
March).  The same equations are valid for every day of the cool season, e.g. the same equation used to 
make a 1-hour forecast of ceilings < 8000 feet valid at 1200 UTC is applicable to every day in the cool 
season. 

5.1. Test results 

Four tests were conducted to determine OBS equation performance.  First, the OBS equation MSE 
values were compared to PCL equation MSE values to quantify a percent improvement or degradation in 
performance realized by the OBS equations over the PCL equations.  Second, hypothesis testing was 
conducted to determine the statistical significance of the difference in performance.  The actual 
performance of the OBS equations was determined by calculating the PODs and FARs for each lead 
time/ceiling height combination.  These tests were conducted using the records in both the dependent and 
independent datasets.  Finally, the TS, B, HR, and KSS scores were calculated to determine the most 
appropriate probability cutoff value to use in operations when determining whether a Yes or No forecast 
should be issued.  These are the major conclusions from the tests: 

• The comparison tests revealed that the OBS equations produced an improvement in the 
probability forecasts over the PCL forecasts from 9% to 15% using the independent data.  
These values were only slightly less than found from using the dependent data, indicating the 
equations were not overfit.  They are also consistent with the PI values found in the literature. 

• The PI values are smaller for the 1-hour lead times and increase through the 2- and 3-hour 
lead times.  They also decrease with decreasing height category. 

• The hypothesis testing showed that the improvement realized by the OBS equations over the 
PCL equations was statistically significant beyond the 99% confidence level. 

• The POD values were significantly higher than the FAR values for the OBS independent data 
forecasts, indicating favorable equation performance.  The highest PODs and lowest FARs 
were generated by the 1-hour forecasts.  The performance degraded appreciably with lead 
time, but the PODs still remained higher than the FARs. 

• The TS, B, HR, and KSS values calculated to determine the appropriate probability cutoff all 
indicated that the equations predicted a large percentage of correct forecasts (TS and HR), 
that they were unbiased (B = 1 at specific probability values), and they produce forecasts 
superior to that of random forecasts (KSS > 0). 

These major conclusions led to the final conclusion that the OBS equations performed well on the 
independent dataset, indicating they will likely perform well in operations and produce more accurate 
forecasts than the PCL method. 
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5.2. Issues with Test Results 

The positive result described in the previous section must be tempered with some peripheral findings 
during the equation development.  While analyzing R2 values to determine an appropriate predictor cutoff 
threshold (Section 3.4.1.2), it was noted that the predictors accounted for 55-60% of the variance in the 1-
hour equations, 45-55% in the 2-hour equations, and 35-40% in the 3-hour equations.  The lowest R2 
values in each lead time category were associated with the forecasts for ceilings < 5000 feet, and the 
highest values were associated with forecasts for ceilings < 10 000 feet.  According to VF, their predictors 
accounted for 85-90% of the variance in most of their equations, regardless of lead time or ceiling height 
category.  The difference in R2 values indicated the possibility that the OBS equations in this study were 
not developed with sufficient data to capture the phenomena necessary for low ceiling formation.  There 
are three possible explanations for the 40-65% unaccounted variance. 

First, only hourly surface observations were used to develop the equations.  While this data type 
worked well for VF and HF, it may not be enough to predict ceilings in the sub-tropical environment of 
east-central Florida.  Rawinsonde data were shown to improve the forecast in HF.  Although the 
improvement was small and only for the hours immediately after the sounding was taken, the use of upper-
air data in the equations may explain more of the variance.  Other upper-air data such as that from satellite, 
radar, 50- and 915 MHz profilers, or model output may also provide predictors that would be helpful in 
explaining part of the variance. 

The second issue is that the surface observation data were grouped into a cool season dataset, stratified 
only by time of day.  This means that the same equation used to make a 1-hour forecast of ceilings < 8000 
ft at 1500 UTC will be applied every day from the beginning of October to the end of March.  This 
stratification was necessary to ensure that the number of ceiling events in each Shuttle FR category was 
large enough to develop robust equations valid for each hour of the day.  In the period from October to 
March, several meteorological phenomena could be responsible for the development of ceilings in east-
central Florida.  They can range in size from a synoptic cold front to the local sea breeze, and from tropical 
to extra-tropical in nature, such as a passing tropical disturbance or a continental air mass.  Most of the low 
ceiling cases in the cool season likely involve events such as fog and frontal systems.  A phenomenological 
stratification of the data would be time-consuming and more data would have to be collected to ensure a 
sufficient number of events were available for the development of stable equations, but it may be useful in 
developing more accurate forecast equations. 

Finally, there was also a question of which statistical model was most appropriate for the equations.  
Although the tests with the data indicated otherwise (Section 3.4.1.1), HF and Wilks state that LGR is a 
more appropriate model than REEP to apply in situations where a probability forecast is to be created from 
binary predictands and predictors.  Other possible models that were not tested include multiple 
discriminant analysis, decision trees, and neural networks.  A fuzzy logic system to forecast ceilings was 
developed by Hicks (1997) for the aviation community and has produced large improvements over 
persistence.  It is possible that REEP is not the most appropriate model and that some other model may 
help explain more of the variance. 

5.3. Other Efforts 

The issue of accurate cloud ceiling forecasts is also highly important to the aviation community.  
Delays to passenger and freight air flights are costly, and many of the delays are caused by low ceilings 
and visibilities (Wilson and Clark 2000; Gurka and Mosher 2000).  Yet, forecasters for aviation still find 
that the prediction of FAA FR ceiling categories is a challenging task.  Several studies funded by the FAA, 
the Department of Defense, and other groups are underway to help improve this forecast.  Wilson and 
Clark (2000) describes a project at the Massachusetts Institute of Technology, Lincoln Laboratory that 
assimilates hourly surface observation, rawinsonde, satellite, sodar, and pyranometer data into algorithms 
that forecast the time of marine stratus burn-off at SFO.  Petty et. al. (2000) describes another project at the 
National Center for Atmospheric Research (NCAR) in which a prototype fuzzy logic method utilizes 
surface observations, satellite data, numerical model output, climatology, pilot reports, and radar data to 
make short-term ceiling and visibility forecasts.  Geiszler et. al. (2000) showed preliminary results of 
comparisons between the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) 
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predictions of ceiling and visibility to those from two NCAR algorithms that use Penn State/NCAR 5th 
Generation Mesoscale Model (MM5) output.  They found large differences between the forecasts and the 
observations and advocated improving the NCAR algorithms and the COAMPS model in order to create 
reliable forecasts of these phenomena. 

It is clear that the issue of ceiling and visibility forecasting is receiving much attention by atmospheric 
researchers.  The previously mentioned studies involved participation by several scientists and cooperation 
between agencies.  Several data types were used in addition to hourly surface observations as input to 
algorithms and numerical weather prediction models.  The use of several data types in the algorithms 
developed in these studies may help account for the missing variance found in the OBS equations 
developed by the AMU.  However, all of the studies mentioned are ongoing and it is unknown when a 
finished product, if any, will be available.  Although they are mainly concerned with forecasting the FAA 
FR, results from these studies should be monitored closely to determine if any of the methods could be 
applied to Shuttle FR ceiling forecasts. 

5.4. Operational Use 

There are 216 OBS equations and 216 PCL equations valid every hour of the day for each of 9 ceiling 
height/lead time categories.  These equations were developed specifically for use only for days in the cool 
season from October to March and only at the SLF.  All of the equations require input that is readily 
available from the standard hourly surface observation METAR code, except for the ERF in the PCL 
equations.  The ERF values will be provided to customers interested in using the PCL equations. 

These equations were developed specifically for use by SMG when making cool-season ceiling 
forecasts for Shuttle landings at the SLF.  However, the 45 WS may also have a need for some of these 
forecast equations.  The 45 WS launch weather officers provide estimations and forecasts of ceiling to the 
Eastern Range (ER) Safety group.  ER Safety is required to visually track the solid rocket boosters through 
8000 feet using a combination of ground and airborne observers.  Since one of the ceiling height categories 
is for ceilings < 8000 feet, the 45 WS may be able to use these equations in helping to make ceiling 
forecasts near the Shuttle launch complexes.  Caution should be exercised if the equations are used for this 
purpose since the equations were developed for the SLF and, as stated earlier, ceilings over the entire 
KSC/CCAFS area can be discontinuous. 

Even use of the equations as intended must be done with care.  The fact that they do not account for all 
phenomena that create low ceilings may cause them to calculate incorrect probabilities at times. 
Nonetheless, the OBS equations developed in this study are still useful in that they are an improvement 
over the PCL method.  They provide the forecasters at SMG another tool with which to make the ceiling 
forecasts critical to safe Shuttle landings at KSC.  Combined with other observational and model data, as 
well as forecaster experience, these equations will likely help to improve the ceiling forecasts at the SLF. 
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List of Acronyms 

45 WS 45th Weather Squadron MOS Model Output Statistics 
AFCCC Air Force Combat Climatology 

Center 
MSE Mean Squared Error 

AMU Applied Meteorology Unit NCAR National Center for Atmospheric 
Research 

B Bias Ratio NDBC National Data Buoy Center 
CCAFS Cape Canaveral Air Force Station NWS National Weather Service 
CMAN Coastal Marine Automated Network OBS Observations-based forecast method 

COAMP
S 

Coupled Ocean/Atmosphere 
Mesoscale Prediction System 

PBI West Palm Beach, FL 3-letter 
identifier 

COF Patrick Air Force Base, FL 3-letter 
identifier 

PCL Persistence Climatology forecast 
method 

DAB Daytona Beach, FL 3-letter identifier PI Percent Improvement 
EDA Exploratory Data Analysis POD Probability of Detection 
EOM End of Mission POR Period of Record 

ER Eastern Range QC Quality Control 
ERF Event Relative Frequency REEP Regression Estimation of Event 

Probability 
FAA Federal Aviation Administration RTLS Return to Launch Site 
FAR False Alarm Rate SFO San Francisco International Airport, 

CA 3-letter identifier 
FR Flight Rules SLF Shuttle Landing Facility 
HF Hilliker and Fritsch 1999 SMG Spaceflight Meteorology Group 
HR Hit Rate TPA Tampa, FL 3-letter identifier 

JAX Jacksonville, FL 3-letter identifier TS Threat Score 
KSC Kennedy Space Center TTS Shuttle Landing Facility, FL 3-letter 

identifier 
KSS Kuipers Skill Score VF Vislocky and Fritsch 1997 
LGR Logistic Regression VRB Vero Beach, FL 3-letter identifier 

MCO Orlando, FL 3-letter identifier WMO World Meteorological Organization 
1992 

MLB Melbourne, FL 3-letter identifier WSR-74C Weather Surveillance Radar, model 
74C 

MLR Multiple Linear Regression WSR-
88D 

Weather Surveillance Radar 1988 
Doppler 

MM5 Penn State/NCAR 5th Generation 
Mesoscale Model 
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