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Executive Summary 

The 45th Weather Squadron (45 WS) forecasters include a probability of lightning occurrence in their daily 24-
Hour and Weekly Planning Forecasts, which are briefed at 1100 UTC (0700 EDT). This information is used for 
general scheduling of operations at Cape Canaveral Air Force Station (CCAFS) and Kennedy Space Center (KSC). 
Forecasters at the Spaceflight Meteorology Group (SMG) also make thunderstorm forecasts during Shuttle flight 
operations. Much of the current lightning probability forecast at both groups is based on a subjective analysis of 
model and observational data. The objective tool currently available is the Neumann-Pfeffer Thunderstorm Index 
(NPTI, Neumann 1971), developed specifically for the KSC/CCAFS area over 30 years ago. However, recent 
studies have shown that 1-day persistence provides a better forecast than the NPTI. These issues indicated that the 
NPTI needed to be upgraded or replaced. Because forecasters require a tool that provides a reliable estimate of the 
daily thunderstorm probability forecast, they requested that a new lightning probability forecast tool be developed. 
In response, the AMU developed a set of statistical lightning forecast equations that provide a probability of 
lightning occurrence at KSC/CCAFS for the current day during the warm season (May–September). 

The equation development incorporated results from two research projects that investigated causes of lightning 
occurrence near KSC/CCAFS and the Florida peninsula. One proved that logistic regression outperformed the linear 
regression method used in NPTI, even when the same predictors were used. This finding influenced the decision to 
use logistic regression in this AMU task. The other study found relationships between large scale flow regimes and 
spatial lightning distributions over Florida. As a result, lightning probabilities based on these flow regimes were 
used as candidate predictors of lightning occurrence for the equation development in this task. 

Fifteen years (1989–2003) of warm season data were used to develop the forecast equations. The data sources 
included the Cloud-to-Ground Lightning Surveillance System (CGLSS), 1200 UTC Florida synoptic soundings, and 
the 1000 UTC CCAFS sounding. Data from CGLSS, a local network of cloud-to-ground lightning sensors, were 
used to determine lightning occurrence for each day. The 1200 UTC Florida soundings were used to calculate the 
synoptic-scale flow regimes and the 1000 UTC CCAFS soundings were used to calculate local stability parameters. 
Each of the three datasets was processed and analyzed to create the predictand, the element to be predicted, and 
candidate predictors needed for the statistical forecast equation development. The CGLSS data were used to create a 
binary predictand for lightning, where 1 denoted that lightning occurred during the day and 0 denoted that lightning 
did not occur. The flow regimes and local stability parameters from the sounding datasets were used to calculate the 
candidate predictors of lightning occurrence. In all, 13 candidate predictors were available for equation 
development. 

The data were stratified into two sub-sets: a development dataset consisting of 13 warm seasons from which the 
equations were developed, and an independent verification dataset of two warm seasons on which the equations 
were tested. One equation was developed for each warm season month using an iterative manual technique in which 
each predictor was tested to determine its ability to explain the variance in the predictand individually and in 
combination with other predictors. The resulting equations contained five or six predictors each. The daily lightning 
climatology, persistence, and flow regime lightning probability were common to all five monthly equations. The 
800–600 mb layer mean relative humidity was a predictor in four of the five equations. Other predictors included the 
Lifted Index, K-Index, Total Totals, and Thompson Index. 

Four equation performance tests were conducted. The results indicated that the equations showed an increase in 
skill over several standard forecasting methods, good reliability, an ability to distinguish between non-lightning and 
lightning days, and improved accuracy measures and skill scores over those for 1-day persistence, which as stated 
previously was shown to outperform the NPTI. Three of the tests, however, showed a tendency for the equations to 
over-forecast the probability of lightning occurrence, i.e. high probability values were calculated when no lightning 
was observed. However, given the overall improved skill over current standard forecast methods, the 45 WS 
requested that the equations be transitioned to operations and added to the current set of tools used to determine the 
daily lightning probability of occurrence. 

A graphical user interface (GUI) was created to facilitate forecaster access to the equations through user-
friendly input and fast, easy-to-read output of the lightning probability for the day. Personnel from the 45 WS were 
involved in the GUI development by providing comments and suggestions on the design to ensure that the final 
product addressed their operational needs. The probabilities output by the GUI are meant to be used as first-guess 
guidance when developing the lightning probability forecast for the day. These probabilities provide an objective 
base from which forecasters can use other observations, model data, consultation with other forecasters, and their 
own experience to create the final daily lightning probability for the 1100 UTC briefing. 
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1. Introduction 

The 45th Weather Squadron (45 WS) forecasters include a probability of lightning occurrence in their daily 24-
Hour and Weekly Planning Forecasts, which are briefed in the morning at 1100 UTC (0700 EDT). This information 
is used for general scheduling of operations at Cape Canaveral Air Force Station (CCAFS) and Kennedy Space 
Center (KSC). Forecasters at the Spaceflight Meteorology Group (SMG) also make thunderstorm forecasts during 
Shuttle operations. Much of the current lightning probability forecast at both groups is based on a subjective analysis 
of model and observational data. The objective tool currently available operationally is the Neumann-Pfeffer 
Thunderstorm Index (NPTI), developed specifically for the KSC/CCAFS area over 30 years ago (Neumann 1971; 
Pfeffer 1967). However, recent studies have shown that the NPTI has several shortcomings. It was proven to under-
forecast lightning occurrence by Wohlwend (1998) although a bias-correction technique was applied by Roeder 
(1998) to improve performance. Howell (1998) and Everitt (1999, hereafter referred to as Everitt) showed that the 1-
day persistence (hereafter persistence) forecast outperforms NPTI by ~10%. These issues indicated that the NPTI 
needed to be upgraded or replaced. 

Because the forecasters require a tool that increases the reliability and objectivity of the daily thunderstorm 
probability forecast, they requested that a new lightning probability forecast tool be developed. In response, the 
AMU developed statistical lightning forecast equations using recent data and more sophisticated techniques now 
possible with more computing power than was available in the late 1960’s. These equations provide a probability of 
lightning occurrence at KSC/CCAFS for the current day during the warm season (May–September). 

1.1. Previous Work 

Several studies have been conducted that address the issue of current-day thunderstorm forecasting specifically 
for the KSC/CCAFS area, and for the Florida peninsula as a whole. Aspects of those studies were important for the 
tool development in this task. 

1.1.1. Neumann-Pfeffer Thunderstorm Index 

Neumann (1971) used 13 years of CCAFS 1200 UTC sounding data (XMR) to develop the NPTI, using hourly 
surface observations of thunder as the predictand. A separate linear regression equation was developed for each 
month in the warm season using five predictors: wind vectors at 850 and 500 mb, average relative humidity (RH) in 
the 800–600 mb layer, Showalter Stability Index (SSI), and day number. The study accounted for non-linear effects 
by representing the predictors with second and third order polynomials rather than the predictor values themselves. 
The coefficients in the polynomials and the coefficients for the predictors in the linear regression equations varied 
by month. The NPTI outputs the probability of thunderstorm occurrence for the day, and also estimates the time of 
thunderstorm development. 

The NPTI output was incorporated into the Meteorological Interactive Data Display System (MIDDS) and can 
be accessed from any computer connected to MIDDS. This is the objective lightning probability forecast tool 
currently in use at the 45 WS. 

1.1.2. NPTI Improvements 

One attempt to update NPTI and possibly improve its performance was done by Howell (1998) at the Air Force 
Institute of Technology (AFIT). This work used 2 more years of data than in Neumann (1971) for a total of 15 years. 
The same procedure used by Neumann (1971) to develop the equations was used in Howell (1998). The goal of the 
study was to determine whether more data in the development of NPTI would improve its performance. Forecasts 
from the original NPTI, the new NPTI, and persistence were compared. The new and current NPTI algorithms 
performed similarly, and persistence outperformed both by a small amount. Given the relatively small change in 
performance of the new NPTI, Howell (1998) recommended the current NPTI continue to be used, and also that a 
more reliable and accurate forecasting technique should be developed. 
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Everitt, also at AFIT, attempted to develop a new technique to replace the NPTI using ~25 years of hourly 
surface observations at the Shuttle Landing Facility (TTS) and morning XMR data. The TTS observations of 
thunderstorm occurrence were used as the predictand and observed and derived variables from the XMR sounding 
as predictors. Logistic regression was used instead of linear regression to develop the Stratified Logistic 
Thunderstorm Index (SLTI). As in the NPTI, the SLTI used the same predictors for each month. The predictors for 
the SLTI were different, however, and included the 850/700/600 mb winds, Thompson Index, K-Index, 800–600 mb 
mean RH, 6-day conditional climatology, and daily climatology. Another version of the NPTI (LNPTI) was created 
using logistic instead of linear regression with the NPTI predictors. An initial test in the study showed that 
persistence outperformed NPTI by ~11%. Tests with LNPTI and SLTI showed improved skill over persistence by 
43% and 44%, respectively. Other performance indicators showed that SLTI was the superior forecast method. 

Given the Everitt results, the AMU was tasked to assist the 45 WS in implementing the SLTI software (Wheeler 
2001). The code was written using the MathCAD® software package, which the 45 WS did not have. The AMU 
converted and tested the code and created a program that could be run on any personal computer (PC) in the 
Weather Operations Center (WOC). Once in operations, the same performance results as those in Everitt could not 
be duplicated. In addition, the procedure to run the code was cumbersome due to the complex nature of creating the 
necessary predictor variables and transferring them from the MIDDS to a PC. After several months of testing the 
code with poor results, the 45 WS decided to stop pursuing the SLTI. 

1.1.3. Daily Flow Regimes 

Lericos et al. (2002, hereafter referred to as Lericos) used 10 years of data to develop lightning distributions 
over the Florida peninsula, stratified by flow regime. The 1200 UTC soundings at Miami (MIA), Tampa (TBW), 
and Jacksonville (JAX), Florida were used to define the flow regimes and data from the National Lightning 
Detection Network (NLDN) were used to determine the distributions. In all, six flow regimes were defined, with 
four relying on the latitudinal position of the subtropical ridge extending westward from the Atlantic Ocean. The 
mean 1000–700 mb wind directions at the three stations were calculated and combined to determine the flow regime 
for each day in the dataset. Then the NLDN data were used to determine the lightning distributions over the Florida 
peninsula for each of the flow regimes. Distinct maxima in lightning activity were noted near and over KSC/CCAFS 
when the ridge was south of the area, and minimal activity with other flow regimes. These results suggested that the 
daily flow regime is an important predictor of lightning occurrence for KSC/CCAFS. 

1.2 Developing the Objective Lightning Probability Forecast Tool 

The equation development in this work incorporated the results from Everitt and Lericos. In particular, the 
logistic regression approach from Everitt and the flow regimes from Lericos were considered significant new 
approaches not used in the NPTI. While the SLTI developed by Everitt was not transitioned to operations, the proof 
that the logistic regression method outperformed linear regression, even when using the same predictors, was a 
significant finding. This influenced the decision to use logistic regression in the AMU task. Based on the results in 
Lericos, flow regime information was added to the candidate predictor set in addition to the daily lightning 
climatology and several XMR sounding parameters as in Neumann (1971) and Everitt. The flow regimes developed 
by Lericos (2002) replaced the wind fields used in the NPTI. 

The details of all data sources used and how they were manipulated to create the equation elements are provided 
in Section 2. Section 3 describes how the data were processed and manipulated to create the predictand and 
candidate predictors. The equation development and testing are described in Section 4, which shows how the 
predictors were chosen for the equations and how well the equations performed. Section 5 describes the graphical 
user interface (GUI) developed to provide an efficient way for the forecasters to manipulate the equations. Finally, 
Section 6 contains the conclusions and suggestions for future work. 
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2. Data 

The period of record (POR) for the data used to develop the forecast equations was the 15 years 1989–2003 and 
the warm season months of May–September. The data sources include the 

• Cloud-to-Ground Lightning Surveillance System (CGLSS), 
• 1200 UTC JAX, TBW, and MIA soundings, and 
• 1000 UTC XMR sounding. 

Data from CGLSS, a local network of cloud-to-ground lightning sensors, were used to determine lightning 
occurrence for each day. The 1200 UTC JAX, TBW, and MIA soundings were used to calculate the daily flow 
regimes and the 1000 UTC XMR soundings were used to calculate the standard stability parameters that are readily 
available to the forecasters. The following sections describe each data type and how they were processed prior to the 
creation of the predictors and predictand for the statistical forecast equations. All data were processed using the S-
PLUS® software package (Insightful Corporation 2001a). 

2.1. Cloud-to-Ground Lightning Surveillance System (CGLSS) 

The CGLSS is a network of six sensors (Figure 1) that collects date/time, latitude/longitude, strength, and 
polarity information of cloud-to-ground lightning strikes in the local area. These data were provided by Mr. Johnny 
Weems of the 45 WS and Mr. Paul Wahner of Computer Sciences Raytheon (CSR). The CGLSS data were used to 
determine whether or not lightning occurred on each day in the POR. Everitt used the TTS hourly surface 
observations of thunder for this purpose, but the CGLSS data are more reliable indicators of lightning occurrence in 
the local area than the surface observations (Mr. Weems, personal communication). Lericos used NLDN data to 
create lightning distributions based on flow regime. However, the CGLSS provides greater spatial accuracy and 
flash detection than the NLDN in the local KSC/CCAFS area (Harms et al. 1998). Using the Lightning Detection 
and Ranging (LDAR; Maier et al. 1995) data would have been more consistent with how the 45 WS issues lightning 
advisories. However, the LDAR data were not used due to the considerable size of the datasets and the shorter POR 
available. The primary purpose of the CGLSS data was to create the binary predictand for the equations. The data 
were also used to create a daily climatological frequency and persistence forecast that would be used as candidate 
predictors and forecast benchmarks against which to test the new equations. 

 
Figure 1. The locations of the six CGLSS sensors are indicated by 
the blue circles. The location names are next to the circles. The Duda 
sensor was moved to the Deseret site (red circle) in 2005. 
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As requested by the 45 WS, the equations were to forecast lightning within warning circles surrounding specific 
asset locations, each with a diameter of 5 n mi (Figure 2). This is analogous to a 45 WS Phase II lightning warning 
in which lightning is imminent or occurring within one of the circles. Ideally, the data should have been filtered to 
include only lightning strikes occurring within the circles in Figure 2. However, due to the complexity of computing 
the latitude/longitude boundaries of the intersecting circles, the area for this study was a rectangle surrounding the 
circles, defined by the outermost points of all the circles. The rectangle defining the spatial area of interest for this 
task encompasses the entire area shown in Figure 2. With this technique, a portion of the area enclosed in the 
rectangle is outside all of the 5 n mi circles, but any lightning within the rectangle would be sufficiently close as to 
cause the 45 WS to consider issuing a lightning advisory and may be reasonably included in the probabilities for 
lightning forecasts (Mr. William Roeder, 45 WS, personal communication). The latitude/longitude information in 
the CGLSS data was used to include only ground strikes that occurred within the area of the rectangle. 

 
Figure 2. The 5 n mi lightning warning circles on KSC/CCAFS and Astrotech 
used to determine the spatial area for the lightning occurrence prediction and 
verification. The actual area is a rectangle surrounding all the intersecting circles 
at their outermost points, represented by the boundaries of this figure. 

After the spatial filtering, the CGLSS data were filtered temporally to include only lightning strikes recorded in 
the time period 0700–0000 EDT. The 45 WS morning forecast is issued at 0700 EDT and is valid for 24 hours. 
However, the 45 WS verification procedure is for the current day, or Day 1, to end at midnight (0000 EDT). Times 
after midnight are considered Day 2. Since the goal of this task is to develop equations for Day 1 forecasting, 
lightning occurring between midnight and 0700 EDT were not considered. 

2.2. Florida 1200 UTC Rawinsondes 

These data were collected to determine the daily flow regimes using the procedure outlined in Lericos. 
Rawinsonde data for the period 1989–1997 were available on the CD-ROMs “Radiosonde Data of North America 
1946–1996” (NCDC 1996) and “Radiosonde Data of North America 1994–1997” (NCDC 1997). Data from 1998–
2003 were downloaded from the Forecast Systems Laboratory (FSL) web site http://raob.fsl.noaa.gov/. 
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Following the procedure in Lericos, the 1200 UTC soundings from MIA, TBW, and JAX were used to 
determine the large scale flow regime for the day. As noted in Lericos the current MIA and JAX sites were located 
at West Palm Beach, FL (PBI) and Waycross, GA (AYS), respectively, prior to 1995. The PBI and AYS data were 
used as proxies for MIA and JAX, respectively, during the period 1989–1994. All future references to MIA and JAX 
include the 1989–1994 data from AYS and PBI. The map in Figure 3 shows the locations of all the soundings used 
in this task.  

 
Figure 3. The red dots on the map show the locations of all soundings used in 
this task. 

Use of the 1200 UTC sounding may seem inappropriate as it cannot provide data in time for the 1100 UTC 
briefing. Use of the 0000 UTC sounding from the day before was ruled out as the 1000–700 mb flow during the 
Florida warm season could be contaminated by afternoon convective circulations that mask the larger scale flow 
pattern. For the purpose of determining the flow regimes for each day in the POR, the 1200 UTC sounding provided 
the most reliable data. Due to the weak synoptic patterns during the Florida warm season, it is not likely that a flow 
regime change would take place in the two-hour period between 1000–1200 UTC. In an operational setting, the 45 
WS can use several data sources, including model output and surface observations, to help determine the flow 
regime of the day before the morning 1100 UTC briefing. Specific suggestions for data sources and procedures that 
can be used to determine the flow regime will be discussed in Section 6. 

2.3. CCAFS 1000 UTC Rawinsonde 

The CCAFS sounding location (XMR) is shown in Figure 3. Data from the 1000 UTC sounding are used for the 
1100 UTC morning briefing since it contains the most recent information on the state of the atmosphere over the 
area. These data were used to calculate the sounding parameters normally available to the forecasters through 
MIDDS. The parameters were used as candidate predictors in the equation development. Mr. Wahner of CSR 
supplied these data to the AMU. 
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The original dataset included all soundings taken on every day in the warm season. The data were first filtered 
to include only 1000 UTC soundings. After noting that there were many days with missing 1000 UTC soundings, a 
check was done to determine all sounding times and the number of soundings at each time. Many of the soundings 
for the “missing” days were from rawinsondes released at 1015 or 1020 UTC, a few between 1020 and 1030 UTC, 
and very few after 1030 UTC. To include all days with 1000 UTC soundings that may have been released late, 
soundings taken at times between 1000–1030 UTC were included in the dataset. The cutoff time of 1030 UTC was 
chosen for two reasons. First, very few soundings were taken after this time. The second reason was to ensure the 
simulation of a real-time situation in which the sounding data must be available to the 45 WS forecasters for the 
1100 UTC weather briefing. A sounding released after 1030 UTC may not provide the data in time for the briefing. 
An automated check was developed to ensure that only one sounding occurred during the 30-minute period on each 
day. On the few days in which two soundings were found, their times were often only 1-2 minutes apart. Mr. Weems 
of the 45 WS said that these were most likely re-transmissions of the sounding due to a possible error in the first 
transmission, and that the latter sounding should be used in the analysis. Hereafter, references to the 1000 UTC 
sounding include soundings taken in the time period 1000–1030 UTC, inclusive. 

Each individual sounding was separated into three groups in the original dataset: thousand-foot, mandatory-
level, and significant-level data. The algorithms in MIDDS use a combination of the mandatory- and significant-
level data. Therefore, the mandatory- and significant-level observations in each sounding were combined into one 
group and sorted by height to create complete individual daily soundings beginning at the surface and extending to 
the highest observed level. The thousand-foot data were not used. 
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3. Preparation of Equation Elements 

After the data were processed as described in Section 2, each of the three datasets was manipulated and 
analyzed to create the elements needed for the statistical forecast equation development. The necessary elements 
include a predictand and candidate predictors. The predictand is the element to be predicted from a predictor or 
group of predictors. The filtered CGLSS data provided the ground truth indicating whether or not lightning occurred 
and were used to create the predictand. The sounding datasets were used to calculate the candidate predictors of 
lightning occurrence, consisting of stability indices and lightning probabilities based on flow regime. 

3.1. Binary Predictand 

Calculation of the predictand was straightforward: the predictand value was set to ‘1’ if lightning was detected 
within the defined time period and spatial area on a specific day, otherwise a ‘0’ was assigned. A binary predictand 
was used because the prediction would be for lightning occurrence, not the number of strikes. Although a larger 
number of lightning strikes increases the probability of a hit in a sensitive area, the 45 WS verification procedure 
only requires one strike for a lightning warning to be validated. 

3.2. Candidate Predictors 

The candidate predictors were tested prior to and during equation development to determine which predictors in 
what combination would provide the best probability forecast of lightning occurrence. They included a 1-day 
lightning persistence and daily climatological lightning frequency calculated from the CGLSS binary predictand, the 
flow regimes from the Florida rawinsondes, and 10 stability parameters calculated from the XMR rawinsonde. 

3.2.1. CGLSS Predictors 

The binary predictand was used to create two candidate predictors: a binary persistence and a daily 
climatological frequency of lightning occurrence. Calculation of the persistence was straightforward. If lightning 
occurred on a particular day, the persistence value for the next day was ‘1’. If lightning did not occur, the persistence 
value was ‘0’. The lightning occurrence information for April 30 was used to create the persistence value for May 1 
in each year. A persistence value was created for each individual day in the POR. 

A 15-year climatological probability of lightning occurrence was calculated for each of the days in the warm 
season, 1 May–30 September 1989–2003. The number of years that each day experienced lightning was determined 
first. Then, a raw climatology was calculated by dividing this number by 15, the number of years in the POR. This 
yielded a fractional value between 0 and 1 for each day. The light blue jagged curve in Figure 4a is the raw 15-year 
climatological probability for the warm season. The noisy appearance of this curve is likely due to the few number 
of years in the POR: 15 is a small number of observations from which to calculate a climatology. A common 
procedure to minimize the noisiness of such a curve is to use a weighted average of the observations several days 
before and after the day of interest, artificially increasing the number of observations used to determine the daily 
lightning probability to infer what the long-term climatology would be if enough observations were available. 
Following Everitt, a 15-day time period from seven days before to seven days after the day of interest was used 
with, at the suggestion of Mr. Roeder, a Gaussian weighting function with a scale factor of 3-days. The dark blue 
curve in Figure 4a is a smoothed climatology that was calculated with the equation 

[ ]

[ ]

7

n k n k n
k 1
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k 1

W(F F ) F
1P
N W 2 1

− +
=

=

⎧ ⎫+ +⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪∗ +
⎪ ⎪⎩ ⎭

∑

∑
 (Everitt), (1) 

where W is the Gaussian weighting function  

( )2

2

k
W exp

2*

⎡ ⎤−
⎢ ⎥=

σ⎢ ⎥⎣ ⎦
 (Wilks 1995) with σ = 3, (2) 
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P = climatological probability on the day of interest, 
N = number of years in the POR (15), 
F = raw probability on day of interest, 
n = day number of interest, and 
k = number of days distant from n. 

Figure 4b shows the weight values (W) used in the calculations. The weight value for the day of interest was 1, 
giving it full weight for the frequency calculation. The weight values for the seven days before and after the day of 
interest decreased normally as the temporal space increased. The lightning probabilities for the last seven days in 
April and first seven days in October were used to calculate the probabilities at the beginning of May and end of 
September, respectively. 

The probabilities were small at the beginning and end of the season, but approached a maximum near 70% in 
mid-July. The significance and cause of the fluctuations in the climatology curve in Figure 4a are not known. A 
similar pattern also appeared in the climatology calculated by Everitt. The fluctuations in the curve from May to the 
end of June and the end of August through September might reflect yearly differences in the onset and conclusion of 
the convective season, respectively. 
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Figure 4. (a) The daily raw (light blue) and smoothed (dark blue) climatological probability values of lightning 
occurrence for the warm-season months in the POR 1989–2003, and (b) The Gaussian weight values used in the 
15-day smoothing equation. 

3.2.2. Flow Regime Predictors 

The 1000–700 mb layer-average winds were calculated and a peninsular-scale flow regime for each day was 
determined following the procedures outlined in Lericos. Then, lightning probabilities based on flow regime were 
calculated using the binary CGLSS predictand. 

3.2.2.1. 1000–700 mb Layer-Average Winds 

The average wind direction in the 1000–700 mb layer at MIA, TBW, and JAX was calculated with a depth-
weighted averaging method using all observations in the layer. The wind speeds and directions at each level were 
first separated into u- and v-components with the equations 

( )i i i
piu Speed cos 270 Direction

180
⎡ ⎤= ∗ − ∗⎢ ⎥⎣ ⎦

 and  

( )i i i
piv Speed sin 270 Direction

180
⎡ ⎤= ∗ − ∗⎢ ⎥⎣ ⎦

, (3) 
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where ‘i’ represents the level number in the layer and (pi/180) is the factor to convert direction from degrees to 
radians. The depth, Di, was a region of influence about the observation at height Hi in the sounding and was 
calculated using the equation  

( )i 1 i 1
i

H H
D

2
+ −−

= ’ (4) 

where Hi+1 is the height at the observation directly above and Hi-1 is the height at the observation directly below Hi. 
In this calculation, the observation has influence in the region encompassing half the distance to the adjacent 
observations above and below it. The layer-averaged value for each component was computed with the equations 

( )i i
avg

i

u D
u

D
∗

= ∑
∑

 and 
( )i i

avg
i

u D
v

D
∗

= ∑
∑

. (5) 

The layer-averaged components were combined in the following equations to determine the average wind speed and 
direction in the layer: 

( ) ( )2 2
avg avg avgSpeed v u= + , (6) 

if uavg ≥ 0, avg
avg

avg

v 180Direction 270 arc tan
u pi

⎡ ⎤⎛ ⎞
= − ∗⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

, or 

if uavg < 0, avg
avg

avg

v 180Direction 90 arc tan
u pi

⎡ ⎤⎛ ⎞
= − ∗⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

, (7) 

where (180/pi) is the factor to convert from radians to degrees. 

3.2.2.2. Flow Regime Determination 

The flow regime for each day depended on the combined layer-averaged wind directions at the three stations. 
There were six flow regimes in Lericos, including one named Calm in which the average wind speed at all three 
stations was < 2 m/s. There were a large number of Calm days in Lericos, accounting for almost 20% of all days in 
the POR. Calculations with the dataset in this task identified less than 1% of days as Calm. Subsequent 
conversations with Dr. Henry Fuelberg and Ms. Jessica Stroupe at the Florida State University revealed that, while 
Ms. Stroupe was working on her thesis (Stroupe 2003), she discovered an error in the original Lericos algorithms. 
Once corrected, the Lericos code calculated no Calm days. Ms. Stroupe assisted the AMU in determining possible 
reasons why the AMU algorithm calculated a few Calm days and the modified Lericos algorithm calculated none. 
The differences in calculated values were determined to be insignificant and were attributed to differences in 
software and computer platforms. 

There are six defined flow regimes in this task, named according to the resulting flow over KSC/CCAFS. The 
Calm regime in Lericos was replaced with a northeast flow regime (NE) in which the wind direction at all three 
stations was in the northeast sector. Table 1 shows the flow regime names, a description of the flow, and the wind 
direction sectors at each station that define the regime. The wind directions must be within the sector defined at each 
station for a particular flow regime to be valid for the day. If one or more of the stations exhibited a wind direction 
in a sector other than those defined in Table 1, a seventh flow regime, Other, was assigned. All three soundings had 
to be available to classify the flow regime. If one or more soundings were missing on any day, no flow regime 
classification was made and data from that day were not used in the equation development. Note that the first four 
regimes in Table 1 depend on the position of the ridge that extends westward toward the Florida peninsula from the 
Bermuda High typically in place over the western Atlantic Ocean during the warm season. 
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Table 1. List of the flow regime names used in this study and the corresponding sectors showing the 
average 1000–700 mb wind directions at each of the stations. 

Rawinsonde Station Flow Regime Name                                
and                                              

Description MIA TBW JAX 

SW-1 Subtropical ridge south of MIA            
Southwest flow over KSC/CCAFS 180°-270° 180°-270° 180°-270° 

SW-2 Subtropical ridge north of MIA, south of TBW 
Southwest flow over KSC/CCAFS 90°-180° 180°-270° 180°-270° 

SE-1 Subtropical ridge north of TBW, south of JAX 
Southeast flow over KSC/CCAFS 90°-180° 90°-180° 180°-270° 

SE-2 Subtropical ridge north of JAX             
Southeast flow over KSC/CCAFS 90°-180° 90°-180° 90°-180° 

NW Northwest flow over KSC/CCAFS 270°-360° 270°-360° 270°-360° 
NE Northeast flow over KSC/CCAFS 0°-90° 0°-90° 0°-90° 
Other When the layer-averaged wind directions at the 

three stations did not fit in defined flow regime    

Missing One or more soundings missing    

3.2.2.3. Flow Regime Climatology 

The frequency distributions of flow regimes for each month and for the entire warm season were created to 
determine if any particular regime(s) dominated in any month or the whole season. This may help forecasters 
determine which month(s) lightning is most likely to occur over KSC/CCAFS, should any of the flow regimes prove 
dominant in lightning occurrence. Figure 5a-f contains bar charts showing the number of days that each flow regime 
occurred in each individual month (Figure 5a-e) and for all warm-season months combined (Figure 5f) in the POR. 
The possible maximum number of days was 2295 for the entire POR, 465 for May, July, and August, and 450 for 
June and September. There were relatively few Missing days at 167 (7%) over the POR, with a relatively uniform 
distribution through the five individual months. This resulted in a total number of 2128 days (93%) in which it was 
possible to determine a flow regime. 

One notable item in all the charts is that the Other category had the most occurrences by far. Lericos initially 
considered 14 flow regimes, but found several of the regimes had an insufficient number of occurrences to calculate 
meaningful statistics. Regimes were dropped or combined resulting in six regimes. It is possible that the Other 
category is made up of those regimes eliminated in Lericos, and possibly other regimes. In any case, the number of 
occurrences in this category was significant and was considered as a legitimate flow regime in the analysis. 

The NW and NE regimes had the least number of occurrences in all months. Discounting the Other category, 
the SW-1, SW-2, SE-1, and SE-2 regimes dominated during the warm season. Since these regimes are based on the 
position of the subtropical ridge extending from the Bermuda High, this shows the strong influence that this ridge 
has on the flow patterns over the Florida peninsula during the warm season. In May (Figure 5a), SW-1 flow 
dominated with a somewhat even distribution of the other regimes. The SW-1, SW-2, and SE-1 regimes dominated 
in June and July (Figure 5b-c), indicating that the ridge tended to stay south, over, or just to the north of 
KSC/CCAFS (i.e. south of JAX). In August (Figure 5d) a transition to increased easterly flow over KSC/CCAFS 
began, shown by the increase in SE-2 regime events but with a uniform distribution between the four ridge regimes. 
By September the transition to more easterly flow events was complete with both SE regimes dominating over both 
SW regimes, and even an increase in the NE regime. 
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Flow Regime Distributions for August 1989-2003
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Flow Regime Distributions for June 1989-2003
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Flow Regime Distributions for September 1989-2003
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Flow Regime Distributions for July 1989-2003

0
10
20
30
40
50
60
70
80
90

100

SW-1 SW-2 SE-1 SE-2 NW NE Other Missing

Flow Regime

# 
O

cc
ur

re
nc

es

173

(c)

 

Flow Regime Distributions for the Warm Season 
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Figure 5. Bar charts showing the number of days each flow regime was observed in (a) May, (b) June, (c) July, 
(d) August, (e) September, and (f) all warm season months in the period of record 1989–2003. The values for the 
‘Other’ category are shown on that bar. The y-axis was scaled to increase the resolution of all other regimes, 
thereby cutting off the ‘Other’ regime bar since had a large number of occurrences in each month. 

3.2.2.4. Flow Regime Lightning Probabilities 

The probabilities of lightning occurrence based on flow regime for each month and the entire warm season were 
calculated using the CGLSS binary predictand. The number of days that each regime occurred was checked against 
the CGLSS predictand to see how many of those days experienced lightning. The climatological probability was 
calculated simply by dividing the number of lightning days within a particular regime by the total number of days 
the regime occurred. 
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After calculating the probabilities by flow regime and examining their values, it was clear that they could be 
excellent predictors of lightning occurrence over KSC/CCAFS. The probability values were so definitive that the   
45 WS requested tables of the probability values be created for each month and transitioned for immediate 
operational use until the final lightning probability tool was available. The tables were created through several 
iterations with Mr. Roeder and Mr. Weems of the 45 WS to ensure the tables would be useful to operations. Six 
tables were created: one for the entire warm season and one for each of the five months in the warm season. Each 
table has a descriptive caption at the top, six columns and a notes section at the bottom. Table 2 provides an example 
of the content found in all the tables. It contains the lightning statistics by flow regime for the entire warm season. 

Table 2. Example of the tables containing the lightning probabilities based on flow regime. This table contains 
the probabilities for all the months in the warm season combined. 

Flow Regime Lightning Statistics 
Warm Season (May–September) 1989–2003 

Probabilities of lightning occurring within a rectangle encompassing all 5 n mi warning rings based on flow 
regime are shown in the right-most column. 
The strikes/day statistical values in the second column are based on lightning days only (fifth column). The 
median (M) value of strikes per day in each regime is shown with the 1st (Q1) and 3rd (Q3) quartiles in the order 
Q1, M, Q3. The mean and standard deviation of the strike numbers are shown in parentheses below Q1, M, Q3 
(see explanation of M, Q1, and Q3 below). 

Flow Regime 
Q1, M, Q3 of 
Strikes/Day 

(Mean, Stdev) 

Total # Days 
(% of Total) 

# Non 
Lightning 

Days 

# 
Lightning 

Days 

Probability of 
Lightning  

SW-1 
Ridge S of MIA 

68, 248, 507 
(396, 496) 271 (12.7) 92 179 66 % 

SW-2 
Ridge between MIA/TBW 

37, 169, 528 
(357, 435) 218 (10.2) 60 158 72 % 

SE-1 
Ridge between TBW/JAX 

4, 18, 110 
(117, 223) 283 (13.3) 140 143 51 % 

SE-2 
Ridge N of JAX 

3, 8, 41 
(61,141) 218 (10.2) 133 85 39 % 

NW 28, 179, 359 
(342, 545) 93 (4.4) 53 40 43 % 

NE 2, 14, 62 
(68, 114) 100 (4.7) 82 18 18 % 

Other (Regime Undefined) 9, 65, 265 
(200, 325) 945 (44.4) 527 418 44 % 

TOTALS 10, 75, 324 
(238, 381) 2128 1087 1041 49 % 

There is a 6% improvement in the forecast when using the individual flow regime probabilities over the seasonal 
climatological probability of 49%, and a 23% improvement over persistence. Forecast improvement was 
calculated using the Brier Skill Score. 
The median is the strike-number value at which 50% of the cases had higher and 50% had lower strike numbers, 
i.e. the center of the strike-number distribution. It is not equal to the mean because the strike-number 
distributions are not symmetric. The ‘middle’ 50% of the cases are found between Q1 and Q3. For asymmetric 
distributions, like lightning strikes/day, the median and inter-quartile ranges are more representative of the data 
than the mean and standard deviation. 
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The first column (left-most) in Table 2 contains the names of the flow regimes as defined in Table 1. The 
second column contains statistical properties of the strike counts for days on which lightning occurred in each flow 
regime. The third column shows the number of days and the percentage of total days that each flow regime occurred 
during the period. The fourth column shows the subset of flow regime days on which lightning did not occur, and 
the fifth column shows the number of days on which lightning did occur. The value in the sixth (right-most) column 
contains the climatological probability of lightning occurrence based on flow regime. This is the value to be used by 
the forecasters, and was also a candidate predictor for the equations. The Totals row in Table 2 shows the values for 
all flow regimes combined. The value in the sixth column of this row contains the climatological lightning 
probability for the entire warm season. For each of the monthly tables, it is the monthly climatology. 

There is further information found in the notes in the last row of Table 2. The first note describes the forecast 
performance of the flow regime probabilities when compared to that of climatology and persistence in terms of 
percent forecast improvement or degradation. The second note gives a brief description of the median and first and 
third quartiles of the daily strike numbers in the second column. The details of how these values were calculated and 
other aspects of the tables were written in an AMU Memorandum (Lambert 2004a). The tables and memorandum 
were distributed to the 45 WS, SMG, and the National Weather Service (NWS) at Melbourne, FL (MLB) for their 
use during the 2004 warm season. 

The flow regime lightning probability values for the individual months were used as candidate predictors in the 
equation development and the overall monthly climatologies were used as forecast benchmarks in determining the 
skill of the equations. The values for these parameters are in the sixth column of the individual monthly tables in 
Lambert (2004a) and are shown in Table 3. The values for the SW-1 and SW-2 regimes were calculated separately 
for each month. However, the values were within 10% of each other. Therefore, the SW-1 and SW-2 days in each 
month were combined to increase the sample size and produce a more reliable probability value. The resulting 
combined SW1-2 values for June, July, and August were also within 10% of each other, and the days for these flow 
regimes and months were combined to create one SW value for the three months. Also for June–August, the SE-1 
and SE-2 regimes were within 10% of each other within and between months. Their values were also combined to 
create one SE flow regime value for all three months. This was not the case for the SE flow regimes in May and 
September, therefore there are separate columns for SE-1 and SE-2 in Table 3. The parentheses around the SE-2 
values for June–August indicate that it is a combined value and the same as SE-1. 

Table 3. Monthly probabilities of lightning occurrence based on the flow regimes that 
were used as candidate predictors. The values in the far-right column are the monthly 
probabilities for all flow regimes combined, and were used as a forecast benchmark. 

Month SW1-2 SE-1 SE-2 NW NE Other Monthly 

May 31 36 10 24 6 23 23 
June 79 51 (51) 58 19 51 57 
July 79 51 (51) 60 40 58 63 
August 79 51 (51) 69 23 54 59 
September 72 60 35 0 24 38 43 
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3.2.3. Stability Index Predictors 

The stability indices calculated from the 1000 UTC XMR sounding were those normally available to the 
forecasters through MIDDS. In order to calculate the same values that would be available to the forecasters, the 
same equations used in the MIDDS code were used. MIDDS uses the Man-computer Interactive Data Access 
System (McIDAS) software (Lazzara et al. 1999) for processing sounding data. Mr. Wahner of CSR provided copies 
of all the necessary McIDAS code. 

The stability index candidate predictors included the 
• Total Totals (TT), 
• Cross Totals (CT), 
• K-Index (KI), 
• Lifted Index (LI), 
• Thompson Index (TI), 
• Severe Weather ThrEAT Index (SWEAT), 
• Showalter Stability Index (SSI), 
• Temperature at 500 mb (T500), 
• Mean Relative Humidity in the 800–600  mb layer (RH), 
• Precipitable water up to 500 mb (PW), 
• Convective Inhibition (CIN), 
• Convective Available Potential Energy (CAPE), 
• CAPE based on the forecast maximum temperature, and 
• CAPE based on the maximum θe below 300 mb. 

3.2.3.1. Calculation of Stability Indices 

The formulas in the McIDAS code used for the indices are standard and can be found in several sources (e.g. 
Peppler and Lamb 1989; Ohio State University Severe Weather Products web page at http://twister.sbs.ohio-
state.edu). They will not be repeated here. Only two indices in the above list are not readily available to the 
forecasters: TI and RH. The TI is calculated easily with the equation TI = KI – LI. The RH was calculated using a 
depth-weighted average in the same form as that used for the average wind direction in the 1000–700 mb layer 
(Section 3.2.2.1, Equations 4 and 5). 

Certain issues arose when calculating the level of free convection (LFC) with the McIDAS algorithms. The 
LFC was necessary to calculate the three CAPE values and CIN in the above list. In certain soundings, the LFC was 
calculated to be below the lifting condensation level (LCL), a physical impossibility. LFC values ranged from within 
a few millibars of the LCL to 6300 mb. There were also some negative LFC values down to -2500 mb. Even if the 
LFC value is unrealistic, the McIDAS code would still calculate a CAPE value. This CAPE value would be 
incorrect and misleading to forecasters. Iterations with the McIDAS developers revealed that this issue was caused 
by the equations and assumptions used in the algorithms rather than bad data quality. The McIDAS developers 
agreed to make certain changes to the code that would fix the issue. Those same changes were made to the code in 
this task and new CAPE values calculated. Details of all the issues found in the McIDAS code and their proposed 
solutions are in an AMU Memorandum that was distributed to the 45 WS, SMG, and NWS MLB (Lambert 2004b). 

While working on the LFC issues with the McIDAS developers, Mr. Weems suggested using the CAPE 
algorithms in another program available on MIDDS called HUGE. The HUGE program was acquired several years 
ago from the National Severe Storms Laboratory. It analyzes sounding data and calculates many of the same 
stability parameters as McIDAS. Mr. Rick Kulow of CSR provided the code and a sample input file to test the 
program. While testing the algorithms and analyzing their output, several typographic and logic errors were noticed 
in the algorithms causing erroneous output. Since this is a common algorithm used by forecasters, the findings were 
summarized in an AMU Memorandum (Lambert 2004c) and distributed to CSR, 45 WS, SMG, and NWS MLB. 
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3.2.3.2. Analysis of Stability Indices 

Before using the 14 candidate stability index predictors from the list above in the equation development, a test 
was done to ensure their validity as predictors. An index that did not pass the test would no longer be considered a 
candidate predictor. The indices were stratified first by month, and then stratified between lightning and non-
lightning days. Mean values for each of the 14 stability indices were calculated separately for the lightning and non-
lightning days in each month, then checked to see if there was a statistically significant difference between them. 

The stability index means for the lightning and non-lightning days were always unequal, but that did not mean 
the differences were significant. To check whether the differences were statistically significant, a two-sample two-
sided Student’s t-test (Wilks 1995) in S-PLUS was applied. This form of the Student’s t-test helps determine the 
probability that two sample means came from the same population. The two-sided test checks whether the means are 
different, not which one is larger or smaller. The null hypothesis in the test is that the two means are equal. The 
Student’s t-test in S-PLUS produces a p-value that is used to determine the confidence level at which this null 
hypothesis can be rejected. The p-value represents the probability of error involved in accepting that the difference 
between the two means is significant (Statsoft, Inc. 2004), or the likelihood that the difference in the means is due to 
chance. The smaller the p-value, the less likely the difference is due to chance and the more probable that the 
difference is significant. The common convention is to use a p-value of 0.05 (5%) as the threshold value to accept or 
reject the null hypothesis. This is interpreted as having 95% confidence that the means are not equal. 

This test was conducted on each set of means for each stability index in each individual month and for all 
months combined. With the exception of CIN and the three CAPE values, the null hypothesis for most stability 
parameters could be rejected at the 99+% confidence level, indicating that the differences in their means were 
statistically significant. Very little confidence could be placed in rejecting the null hypothesis for CIN and the three 
CAPE values. The p-values for these indices were between 0.5 – 0.9, indicating that any differences in mean values 
between lightning and non-lightning days was not statistically significant. This was not a surprise to local forecasters 
since anecdotal evidence suggests that there is often substantial CAPE on both lightning and non-lightning days as 
low level warm air and moisture are abundant in the Florida warm season. 

Another difficulty in using CAPE and CIN as predictors was that a value was not able to be calculated for every 
sounding. The McIDAS code needs to calculate an LFC before calculating CAPE and CIN. If an LFC could not be 
found, the values were not calculated. This artifact of the code resulted in reducing the available dataset by another 
10% beyond that accounted for by missing data. Given that the difference in CAPE and CIN means between 
lightning and non-lightning days was not statistically significant, it was not worth losing the extra data. Therefore, 
all the stability indices except CIN and the three CAPE values were used as candidate predictors. 

3.2.4. Summary of Candidate Predictors 
A summary of the candidate predictors is given here as a reference for the reader. As a result of the analyses 

presented in Sections 3.2.1 – 3.2.3, 13 candidate predictors were created for the equation development. They are 
• Persistence, 
• Daily climatological lightning frequency, 
• Flow regime lightning probability, 
• Total Totals (TT), 
• Cross Totals (CT), 
• K-Index (KI), 
• Lifted Index (LI), 
• Thompson Index (TI), 
• Severe Weather ThrEAT (SWEAT) Index, 
• Showalter Index (SSI), 
• Temperature at 500 mb, (T500), 
• Mean Relative Humidity in the 800–600 mb layer (RH), and 
• Precipitable water up to 500 mb (PW). 

The values for these candidate predictors were used with the binary predictand in the development of the statistical 
lightning forecast equations. 
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4. Equation Development and Testing 

There were three major steps in this portion of the task: 
• Ascertain data availability, 
• Develop the logistic regression equations, and 
• Determine the equation performance. 

The amount of data available for equation development was critical to the reliability of the new equations. After 
determining that an appropriate amount of data was available, a set of five equations was developed, one for each 
month in the warm season. The performance of the equations was assessed using several verification techniques 
appropriate for probability forecasts. 

4.1. Data Availability 

The amount of available data was determined before equation development began. This was important since the 
data had to be stratified into equation development and verification datasets followed by stratification into monthly 
datasets, thereby limiting the amount of data available for equation development. To ensure that the new equations 
would be reliable, ample data were required to create realistic relationships between the predictors and the 
predictand. The World Meteorological Organization (1992, hereafter WMO) states that there should be at least 250 
events in the dataset in order to derive stable statistical relationships. This was the threshold in determining whether 
there were sufficient data in the POR. 

4.1.1. Missing Data 

There are 153 days in any given warm season, 1 May–30 September. This equates to 2295 days over the 15-
year POR. Sounding data were not available for every day in the POR. Data were considered missing for a specific 
day if there was one or more Florida rawinsonde missing (MIA, TBW, or JAX), or when a 1000 UTC XMR 
sounding was missing. Table 4 shows a summary of how many days were in the POR, how many of those days had 
missing data, which type of data was missing, and the total number of days with available data. In most of the 
missing cases, data were not available from either the XMR or the Florida rawinsondes. There were few cases in 
which data were missing from both sources on the same day. The number in the third column under the heading “# 
Missing Obs” in Table 4 is less than the sum of the first two columns in every case except for September because 
there were a few “overlap” days in which data were missing from both sources. The numbers of overlap cases are 
shown in parentheses in the third column. The sum of the first two numbers in the Total row is 313 (167 + 146), but 
the total missing is 297. This says that data were missing from both sources on the same day only 16 times. 

The final column in Table 4 shows that data availability ranged from 85–90% for each month, and 87% overall. 
Most important, though, was the actual number of available days per month, ranging from 389 – 420. This was 
promising in that it was still probable that there would be a sufficient number of events for the equation 
development, according to the WMO standard, after stratifying the full dataset into development and testing 
datasets. 
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Table 4. Summary of missing and available data in the POR. The first column contains 
the name of each month in the warm season, where Total is for the entire warm season. 
The two columns under the heading “# POSSIBLE DAYS” show the number of days in 1 
warm season and 15 warm seasons. The three columns under the heading“# MISSING 
DAYS” show the number of unavailable days due to missing data from each source in the 
subheadings, and the number of days missing due to the combined contribution of missing 
data from both sources. The value in parentheses in the third column is the number of days 
in which data were missing from both sources. The final column shows the number of 
days with all data available. The percent of total possible days is given in parentheses. 

# POSSIBLE DAYS # MISSING DAYS Warm 
Season 
Months 1 Year 15 Years 

MIA 
TBW 
JAX 

XMR Total 
(Overlap) 

Total 
Available 

(% of # Possible) 

May 31 465 29 21 45 (5) 420 (90) 
June 30 450 37 29 61 (5) 389 (86) 
July 31 465 38 25 60 (3) 405 (87) 
August 31 465 34 39 70 (3) 395 (85) 
September 30 450 29 32 61 (0) 389 (86) 

Total 153 2295 167 146 297 (16) 1998 (87) 

4.1.2. Development and Verification Datasets 

The development dataset required enough samples so that the resulting set of equations was stable, i.e. the 
equations would maintain consistent forecast accuracy on different datasets. A small dataset may not contain a 
representative set of events. The equations developed from such a small set may show wide variations in accuracy 
on different datasets causing forecasters to not have confidence in the results. The verification dataset was needed 
for equation testing in order to have a more realistic view of how the equations would perform in operations. It was 
expected that the equations would not perform as well on the verification data as they would on the data from which 
they were developed. However, if performance were a great deal worse with the verification data, this would 
indicate that either too many predictors were chosen and the equations were fit too strongly to the development data, 
or the development dataset was too small. 

The dataset described in Section 4.1.1 was stratified into development and verification datasets. Care was taken 
to ensure there would be at least 250 events in the development dataset, while still having enough events in the 
verification dataset to make reasonable conclusions about equation performance. Of the 15 warm seasons in the 
POR, 13 were used for equation development and 2 were set aside for testing the equations. This ensured that each 
month in the warm season was equally represented in both datasets. 

The stratification did not involve choosing individual warm season years for each dataset, but rather individual 
warm season days. Days for the verification dataset were chosen first. Given that there are 153 days in the warm 
season, the random number generator in Microsoft® Excel© was used to create two sets of 153 numbers representing 
the years between and including 1989 and 2003. The resulting two sets of years were assigned to each day in the 
warm season. Thus, each day in the warm season was represented by days from two random “years”. For example, 
the verification dataset contains 1 May 1992 and 2000, 2 May 1998 and 1999, etc. All other dates were made part of 
the development dataset. This random method was chosen to reduce the likelihood that any unusual convective 
seasons would bias the results. Table 5 shows the possible number of events for the development and verification 
datasets and the actual number of events after accounting for missing data. Note the number of days in the 
development dataset for each month in the right-most column. All are well above the 250 events defined by the 
WMO needed to develop reliable equations. 
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Table 5. Summary of missing and available data for equation development and testing. The 
first column contains the name of each month in the warm season, where Total is for the entire 
warm season. The three columns under the heading “# POSSIBLE DAYS” show the number of 
days in 15 warm seasons, the number of those days for equation testing, and the number for 
equation development. The three columns under the heading“# AVAILABLE DAYS”, show the 
number of days actually available in the POR due to missing data (from Table 4), and the 
actual number of days in the verification and development datasets. 

# POSSIBLE DAYS # AVAILABLE DAYS Warm 
Season 
Months Total Verification Development Total Verification Development

May 465 62 403 420 56 364 
June 450 60 390 389 51 338 
July 465 62 403 405 51 354 
August 465 62 403 395 51 344 
September 450 60 390 389 48 341 

Total 2295 306 1989 1998 257 1741 

4.2. Equation Development 

Similar to Everitt, five logistic regression equations were created, one for each month. In Everitt, predictors 
were chosen based on their relationship to the predictand over the whole warm season resulting in the same 
predictors being used in each month. However, the predictors were regressed against the predictand for each 
individual month. This created different values for the predictor constants in the individual monthly equations. In 
this task, predictor selection was conducted for each individual month due to the possibility that different variables 
may become more critical to convection formation as the warm season progresses. 

4.2.1. Logistic Regression 

Besides data availability, another important factor in creating a reliable probability forecast tool is the selection 
of the statistical regression method. According to Wilks (1995), logistic regression is the appropriate method when 
the predictand is binary. Everitt showed that logistic regression yielded 48% better skill over the linear regression 
equations in NPTI when using the same predictor variables and data. The gain in skill was solely due to use of the 
logistic regression method. Given a predictand, y, and a set of predictors x1–xk, where k is the total number of 
predictors, logistic regression is represented by the equation 

0 1 1 k k

0 1 1 k k

(b b x ... b x )

(b b x ... b x )
ey

1 e

+ + +

+ + +
=

+
, (8) 

where b1–bk are the coefficients for the corresponding predictors. 

Although linear regression can be used to calculate probability forecasts, it has certain weaknesses. It can allow 
the calculation of values greater than 1 or less than 0, which are unrealistic. Linear regression also cannot account 
for a marked change in probability when a parameter passes beyond a threshold value or range of values, as often 
happens in the atmosphere. Output from a logistic regression equation is bounded between 0 and 1. It allows for 
marked changes in probability as predictor values exceed a threshold, or for nearly linear response to the predictor if 
that is appropriate. 
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Figure 6 illustrates the differences between linear and logistic regression using an idealized single-predictor 
example. Assuming the predictor values increase to the right, one can see that the probability of a predictand event 
occurring increases as the value of the predictor increases. The linear relationship between the predictand and 
predictor values is shown by the dashed line and the non-linear logistic relationship by the solid curve. For predictor 
values at the high and low ends of the x-axis, the linear regression predicts probabilities greater than 1 and less than 
0, respectively. From Equation 8, the value of y approaches 1 as the value of (b0 + b1x1 + … + bkxk) approaches +∞, 
and approaches 0 as the value of (b0 + b1x1 + … + bkxk) approaches -∞. As a result, the logistic regression curve 
approaches 0 and 1 but can never go beyond those bounds. 

Figure 6 also shows a rather distinct change in the frequency of occurrence of a predictand event at the midpoint 
of the predictor values. The slope of the logistic regression curve increases at the midpoint, responding to the 
predictand event frequency change. The linear regression curve cannot change slope to respond to such changes. 
The result when using logistic regression tends to be more realistic, yielding more accurate probabilities of 
predictand event occurrence than linear regression in situations of sharp changes in predictand event frequencies. 
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Figure 6. Illustration of linear (dashed line) vs. logistic (solid curve) 
regression probability forecasting for a binary predictand and one 
predictor. The blue diamonds represent the predictand values at 
certain predictor values. The forecast probability values are along the 
y-axis. The predictor values along the x-axis are assumed to increase 
monotonically to the right (similar to Wilks [1995] Figure 6.10). 

4.2.2. Residual Deviance Calculation 

Before discussing the specifics of predictor selection, the reader should have a general understanding of a 
parameter called residual deviance. The contribution of each candidate predictor to the reduction in variance was 
determined by this parameter. The residual deviance serves the same role in logistic regression as does the residual 
sum of squares in a linear regression (Insightful Corporation 2001b). Menard (2000) examined several methods that 
help determine the amount of predictand variance explained by predictors in logistic regression equations. The 
preferred method in that study was determining the percentage drop in the residual deviance when a new predictor 
was added. Therefore, it was the method employed in this study. 
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To obtain the residual deviance, each equation was input to the S-PLUS function ANOVA (analysis of 
variance), which output residual deviance for a NULL equation and for each of the predictors in the equation. A 
NULL model has only one predictor, x0, whose value is 1. Assuming b0 is equal to b0x0 in this case, this results in b0 
as the only term in the exponents of Equation 8. The NULL equation b0 values ranged from -1.19 in May to 0.52 in 
July. Putting these values in Equation 8 results in y = 0.23 for May and y = 0.63 for July. These values are equal to 
the lightning climatology for these months (see Table 3, right-most column). In essence, the NULL equation predicts 
the monthly climatology as found in the dependent dataset. The residual deviance for the NULL equation is 
calculated with the general equation 

Residual Deviance = 2*[log(y)*(# yes) log(1 y)*(#no)]− + − , (9) 

where y is the probability calculated by Equation 8, #yes is the number of days with lightning and #no is the number 
of days with no lightning. With the above values for b0, the NULL residual deviance was 395.7 for May and 467.6 
for July. Equation 9 becomes more complex when other predictors are added. As each predictor is added, the 
residual deviance is reduced from the NULL value. 

4.2.3. Predictor Selection 

As stated earlier, predictor selection was conducted for each individual month using the development dataset. 
The predictors were selected and equations developed using the S-PLUS software, which has functions specifically 
designed to create logistic regression equations and test how each individual predictor contributes to the reduction in 
variance of the predictand. 

4.2.3.1. Residual Deviance Check 

The values for the predictor coefficients in a logistic regression equation (Equation 8) cannot be solved 
analytically, but must be estimated using computationally intensive iterative techniques (Wilks 1995) that are much 
too cumbersome to be done manually. The procedure to develop a logistic regression equation outlined in the S-
PLUS User’s Manual was used to create the equations. The candidate predictors were added to a logistic regression 
equation one-by-one and their contribution to the reduction in residual deviance noted. While more automatic 
predictor selection methods in S-PLUS could have been employed, the manual process used here allowed for more 
control over understanding exactly how each individual predictor contributed to the reduction in residual deviance 
individually and in combination with other predictors. It was also facilitated by the relatively small number of 
candidate predictors available for selection. 

Predictor selection began by using each of the 13 candidate predictors as a lone predictor in Equation 8, 
resulting in 13 single-predictor logistic regression equations. The reduction in residual deviance from each single 
predictor was measured from that of the NULL model. The candidate predictor that affected the largest reduction in 
the residual deviance was chosen as the first predictor in the equation. Next, the other 12 candidate predictors were 
added individually with the first predictor creating a set of 12 two-predictor equations. The second candidate 
predictor that reduced the residual deviance by the largest amount in combination with the first was chosen as the 
second predictor. The remaining 11 candidate predictors were added individually to the new two-predictor equation, 
and the predictor that reduced the remaining residual deviance by the most was chosen as the third predictor. This 
iterative process continued for all 13 predictors. Figure 7 shows the percent reduction in residual deviance from the 
NULL model as each predictor was added for the month of July. The TT reduced the residual deviance by the most 
(11%) and was, therefore, the first predictor in the July equation. The second predictor was persistence, which 
accounted for an additional 5% reduction in residual deviance. The RH was the third predictor, reducing the residual 
deviance by 2%, and so on. 
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Reduction in Residual Deviance by Predictor
July 1989-2003
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Figure 7. The total percent reduction in residual deviance from that of the 
NULL model as each predictor was added to the equation using the July 
development dataset. 

Optimally, this procedure would have resulted in one 13-predictor equation. However, there were times that the 
residual deviance explained by one predictor was very similar or equal to that of another predictor in the same 
iteration. Two equations were created at that point, one for each of the predictors with similar reductions in residual 
deviance. Each equation continued through the iteration process from that point. Between 2 and 3 equations for each 
month were created in this manner. In every instance, the first three candidate predictors chosen in each month were 
large outliers in terms of their reduction of the residual deviance. Equation “splitting” did not take place until at least 
the fourth predictor was added. For July, predictor selection was decisive for each predictor up to the flow regime 
lightning probability (fifth iteration). At the sixth iteration, KI and SSI both reduced the residual deviance by 0.3%. 
Two equations were created: one containing KI as the sixth predictor and the other containing SSI as the sixth 
predictor. The example in Figure 7 shows the 13-predictor equation with KI as the sixth predictor. 

Using all the predictors would likely result in over-fitting the regression equations such that they would perform 
well with the development data but no other datasets. Several equations were developed for each month and tested to 
determine the point at which adding another predictor would result in over-fitting. First, a threshold of 0.5% in the 
reduction of residual deviance was chosen as a predictor cutoff point, with the assumption that the predictors 
causing a residual deviance reduction ≥ 0.5% would be retained and those causing a reduction of < 0.5% would be 
rejected for the final equation. The 0.5% reduction threshold coincided close to where the slope of the residual 
deviance reduction curve began to flatten, as can be seen in Figure 7 in the vicinity of KI and the flow regime 
probability (Fl-Reg Prob). 

4.2.3.2. Cutoff Threshold Check 

Next, equations were created that included predictors with residual deviance reductions close to and 
surrounding the 0.5% threshold to determine where the most appropriate predictor cutoff existed. A base equation 
was designated that contained only predictors that reduced the residual deviance by ≥ 0.5%. For example, the base 
equation in July contained five predictors: 

• TT, 
• Persistence, 
• RH, 
• Daily lightning climatology (Daily Climo in Figure 7), and 
• Flow regime probability (Fl-Reg Prob in Figure 7). 
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Equations were created with one, two, and three less predictors; and one, two, and three more predictors than 
the base equation according to residual deviance reduction rank. For July, the KI-SSI split occurred immediately 
below the 0.5% threshold. This resulted in two equations with one more predictor added to the base equation (base 
equation plus KI, base equation plus SSI), two equations with two more predictors, and two equations with three 
more predictors. The total number of equations tested for July was 12 including the base equation and the two 13-
predictor equations. The number of equations tested for each month was between 8 and 15 depending on the number 
of splits, if any. 

These equations were used to create probability forecasts for the development and verification datasets. For 
July, that meant 12 sets of probabilities from the development data and 12 sets from the verification data. The mean-
squared error (MSE) for the probability forecasts from each equation and dataset was calculated to determine 
equation performance. The MSE is given by the equation 

n
2

i i
i 1

1MSE (p o )
n =

= −∑ , (9) 

where n is the number of forecast/observation pairs, pi is the probability calculated from the equation, and oi is the 
corresponding binary lightning observation (Wilks 1995). The MSE is 0 for a perfect forecast. The dependent 
dataset was used to confirm that the equations would perform well on the dataset from which they were developed. 
The 13-predictor equations produced the lowest MSEs (0.16 – 0.23) with the development dataset as expected, 
indicating the best performance compared to equations with fewer predictors. The MSE values from the 13-predictor 
equations using the verification dataset were higher than those produced by the other equations, again as expected. 
This indicated that the 13-predictor equations were over-fitted, performing well only on the dataset from which they 
were developed. The equation producing the lowest MSE with the verification data was chosen as the final equation 
for each month. For July, the base equation defined in the previous paragraph produced the lowest MSE with the 
verification dataset. This was also the case for May and September. The June and August equations used the base 
equation plus the next predictor (1-more) below the 0.5% threshold. 

Table 6 shows the final predictors for each of the monthly equations in order of their contribution to the 
reduction in residual deviance. Three predictors stood out in all five equations: 

• Flow regime lightning probabilities, 
• Smoothed daily lightning climatology, and 
• Persistence. 

The RH was the next most common predictor occurring in four of the five equations, indicating the importance of 
moisture. The next most common predictors were TT and LI, occurring in two equations each. Three other 
predictors, TI, T500, and KI, occurred in only 1 equation each. 

Table 6. The final predictors for each monthly equation, in order of their contribution to the reduction in residual 
deviance. The predictors in red font were chosen in every month, and the predictors in blue font were chosen in 
four months. The other predictors in black font were chosen only once or twice. 

May June July August September 

TI 
Flow Regime 
Persistence 
Daily Climatology 
T500

800–600 mb RH 
Persistence 
LI 
Flow Regime 
Daily Climatology 

TT 
Persistence 
800–600 mb RH 
Daily Climatology 
Flow Regime 

KI 
Flow Regime 
TT 
Daily Climatology 
800–600 mb RH 
Persistence 

Persistence 
Flow Regime 
800–600 mb RH 
Daily Climatology 
LI 
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4.3. Equation Performance 

The predictors in the verification dataset were used in the equations to produce ‘forecast’ probabilities. These 
probabilities were compared with the binary lightning observations in the verification dataset using four tests that 
measured different aspects of forecast performance. They were the 

• Brier Skill Score, which is a measure of equation performance versus other standard forecast methods, 
• Distributions of the probability forecasts for days with and without lightning, 
• Reliability diagram of the observed lightning frequency as a function of the forecast probability, and 
• Categorical contingency table statistics. 

The Brier Skill Scores were calculated for each individual month to show how each equation performs against 
corresponding standard forecast methods. The number of available days in each month of the verification data 
ranged from 48–56 (Table 5). The individual monthly samples were small, but large enough to provide a reasonable 
estimate of relative skill with the Brier Skill Score. The other three procedures required more data, so the available 
days in all months were combined into one dataset to increase the sample size. 

4.3.1. Brier Skill Score 

The first test of the equations was whether or not they showed an improvement in skill over other forecast 
methods. This involved calculation of the Brier Skill Score (SS) as 

eqn ref

perfect ref

MSE MSE
SS *100

MSE MSE

⎛ ⎞−
= ⎜⎜ −⎝ ⎠

⎟⎟  (Wilks 1995), (10) 

where MSEeqn is the MSE of the equation being tested, MSEref is that for the reference forecast method against 
which the equation is being tested, and MSEperfect is the MSE of a perfect forecast, which is always 0. The SS 
represents a percent improvement (degradation) in skill of the equation over the reference forecast when it is 
positive (negative). Four methods were used for the reference forecasts: 

• Smoothed daily lightning climatology (Figure 4a), 
• Monthly lightning climatology (Table 3), 
• Flow regime lightning probabilities (Table 3), and 
• Persistence. 

The SS values for each of the monthly equations are shown in Table 7. All SS values are positive, indicating 
that the equations produced an increase in skill over all four reference forecasts in all months. The percent 
improvement over persistence was the largest for all reference forecasts except for May, in which it was the second 
largest. This improvement is significant in that persistence is well-known to outperform NPTI. It should follow that 
the equations would outperform NPTI as well. The smallest percent improvements were over the probabilities based 
on flow regime, except for May in which it was the largest. 

Table 7. The percent improvement in skill of the logistic 
regression equation forecasts over the reference forecasts of 
persistence, daily and monthly lightning climatologies, and 
flow regime probabilities. These results were calculated 
using the verification data. 

Forecast Method May Jun Jul Aug Sep 

Persistence 31 53 38 42 43 
Daily Climatology 27 18 27 12 21 
Monthly Climatology 34 20 27 16 22 
Flow Regime 34 13 20 8 21 
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4.3.2. Probability Distributions 

In the next test, the equation probability forecasts from all days in the verification dataset were stratified by 
lightning and non-lightning days. The distribution of the probability values was calculated for each stratification. 
Figure 8 shows the two probability distributions for lightning days, represented by the pink curve, and non-lightning 
days, represented by the blue curve. For good performance, one would expect the blue curve to have a maximum in 
the lower probability values decreasing to a minimum at higher probability values, and the pink curve to have a 
minimum in the lower probability values increasing to a maximum at the higher values. 

The blue curve for non-lightning days has a peak near 40% at probability values of 0.2 then decreases to almost 
10% at 0.6, followed by a small rise to 20% at 0.8, then a decrease to just below 10% at 1. It shows a high 
percentage occurrence of non-lightning events at the lower probabilities and decreasing toward the higher 
probabilities as one would expect for good performance. However, the secondary maximum at 0.8 suggests an 
increased possibility of false alarm forecasts. This secondary maximum could be caused by the fact that the 
equations do not take all factors into account that influence thunderstorm development. It is also possible that 
lightning could have occurred in the vicinity on those days but not within the spatial area as defined in Figure 2. 

The pink curve for lightning days shows low frequencies slowly increasing to 10% up to a probability value of 
0.5, then quickly increasing to just less than 40% at 0.8 and staying at that level through a probability of 1. This 
indicates that the equations perform well for lightning days. This curve also increases above the blue curve at 0.55 
probability. This would show that probability forecasts above 0.55 are more likely to be calculated on lightning days 
as opposed to non-lightning days. 

Forecast Probability Distributions for Lightning 
(LTG) and Non Lightning (No-LTG) Days
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Figure 8. The forecast probability distributions for lightning (pink) 
and non-lightning (blue) days in the verification data. The y-axis values 
represent the frequency of occurrence of each probability value, and 
the values on the x-axis represent the forecast probability values output 
by the equations. 
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4.3.3. Reliability Diagram 

Figure 9 shows the reliability diagram for probability forecasts using the verification dataset. Where the blue 
curve is below the pink curve, the equations were over-forecasting lightning occurrence, and where the blue curve is 
above the pink curve, the equations were under-forecasting lightning occurrence. Most blue curve values are below 
the pink curve but within 10% of the pink curve values, indicating only slight over-forecasting. The exceptions are 
at 0.4, 0.5, and 0.8 forecast probabilities. Lightning occurred 55% of the time when a probability of 0.4 was forecast, 
indicating an under-forecast of 15%. When a probability of 0.5 was forecast, lightning occurred only 38% of the 
time, indicating an over-forecast of 12%. A large over-forecast existed for a probability forecast of 0.8, for which 
lightning occurred only 50% of the time. A detailed examination of the data revealed no clear pattern of why there 
was such a discrepancy at this value. It could be an artifact of the dataset; a larger dataset may not exhibit such 
behavior. It may also be indicative of the false alarm rate at the higher forecast probabilities, although the blue curve 
values for all other probabilities above 0.5 were well within 10% of the corresponding pink curve values. 

Reliability Diagram for All Equations
(May-September)
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Figure 9. The reliability diagram of the probability forecasts for all 
months. The pink curve represents perfect reliability and the blue curve 
represents the probability forecast reliability. The inset rectangle is the 
histogram showing the number of observations in each probability 
range. 
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4.3.4. Contingency Table Statistics 

The final test was to create a contingency table and calculate the probability of detection (POD), false alarm 
ratio (FAR), hit rate (HR), critical success index (CSI), and the Heidke and Kuipers skill scores (HSS and KSS, 
respectively). Table 8 shows an example of the contingency table with equations for the accuracy measures and skill 
scores (Wilks 1995). An event is counted in 

• Cell a if it is forecast and observed (a forecast hit), 
• Cell b if it is forecast and not observed (a false alarm forecast), 
• Cell c if it is not forecast but observed (a forecast miss), and 
• Cell d if it is not forecast and not observed (a forecast hit). 

The HR is the percentage of correct yes or no forecasts, and the POD is the percentage of ‘yes’ forecasts in the 
number of ‘yes’ observations. The FAR is the percentage of ‘no’ observations in the number of ‘yes’ forecasts. The 
CSI is the percentage of correct ‘yes’ forecasts in the sum of all ‘yes’ forecasts and observations. The HSS and KSS 
values represent the forecast performance compared to a reference random forecast, the difference being that in the 
KSS the random forecast is constrained to be unbiased. 

This type of forecast verification is most appropriate for categorical, or binary, forecasts in which a 
phenomenon is forecast to occur or not. It is a less appropriate method for probability forecasts that express levels of 
uncertainty in which no probability value in the range 0 – 1 is necessarily wrong or right (Wilks 1995). Nonetheless, 
it is a familiar and easily understood method that can shed light on forecast performance provided an appropriate 
probability threshold value is defined above which the forecast will be considered ‘yes’ and below which the 
forecast will be considered ‘no’. 

Table 8. Basic contingency table for calculating 
categorical accuracy measures and skill scores 
(Wilks 1995). The equations for the accuracy 
measures and skill scores are in the bottom row. 

Observation 
 

Yes No 

Yes a b Probability 
Forecast No c d 

n = a + b + c + d 
POD = a/(a+c) FAR = b/(a+b) HR = (a+d)/n 
CSI = a/(a+b+c) KSS = (ad – bc)/[(a+b)(b+d)] 
HSS = 2(ad – bc)/[(a+c)(c+d) + (a+b)(b+d)] 

The proper threshold value depends on the forecast decision issue to which the user will apply the forecast 
(Wilks 1995). The goal of this task was to create a system of equations that outperforms persistence, which has been 
shown to outperform NPTI. Everitt produced graphs of contingency table values versus equation probability cutoff 
values along with the contingency table cell values for persistence in order to determine an optimum cutoff value at 
which the accuracy measures and skill scores indicated better forecast skill than persistence. Everitt’s procedure was 
followed here. 
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Figure 10 shows the contingency table values for persistence and a range of equation output probability values 
from 0.1–0.9 in increments of 0.01. The persistence forecast was purely categorical in that it was a binary forecast 
for a binary predictand, so it had only one set of contingency table values. They are designated by the horizontal 
straight lines in Figure 10. Contingency table values for each of the probability values were determined by assuming 
all probabilities at or above a specific cutoff value were ‘yes’ forecasts, and all values below were ‘no’ forecasts. 
The contingency table values at each probability cutoff value are shown by the curves with symbols in the graph, 
color-matched to the same contingency table cell for the persistence forecast. A range of probability cutoff values 
were then isolated such that all four cell values were optimized to be better than persistence. The objective was to 
have more forecast hits and fewer false alarms and misses than persistence. This resulted in a probability cutoff 
range of 0.59–0.63, which is outlined by the vertical black lines in Figure 10. 

Contingency Table Values for Varying Probability Cutoff Values
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Figure 10. Graph showing the values in the four contingency table cells in Table 8 for the range of 
probability values 0.1–0.9 in increments of 0.01. Dark blue represents values in cell a, purple 
represents values in cell b, orange represents values in cell c, and cyan represents values in cell d. 
The horizontal straight lines represent the persistence forecast (pers) and the curves with symbols 
represent the equation forecasts (eqn) as shown in the legend. The vertical black lines show upper 
and lower bounds of the probability range of where all cell values are maximized or minimized 
such that the accuracy measures and skill scores will show better performance than persistence. 

The accuracy measures and skill scores were calculated for each probability in the range 0.59–0.63 to assist in 
determining which value should be the cutoff. Because it had the maximum HR and was in the middle of the range 
of values, 0.61 was chosen as the cutoff value. All probabilities at or above 0.61 were considered ‘yes’ forecasts and 
all those below 0.61 were considered ‘no’ forecasts for the contingency table. 
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The contingency table cell, accuracy measure, and skill score values for the probability cutoff of 0.61 and 
persistence are shown in Table 9. The HR, POD, and CSI are 100% for a perfect forecast and 0% for the worst 
possible forecast, and vice versa for FAR. The HSS and KSS are 1 for perfect forecasts, 0 for performance 
equivalent to a random forecast, and < 0 for performance worse than that of a random forecast. The HR and POD 
values were relatively high at 73% and 75%, respectively, for the equations. The FAR was relatively low at 33%, 
but still high enough to be considered as a factor when using the equations for forecasting lightning occurrence. The 
CSI value is better than 0.5, but not necessarily an indicator of good performance. The HSS and KSS values are not 
high, but are positive and indicate performance better than that of random forecasts. Comparing the equation 
measures and scores to those of persistence, it can be seen that the equations outperform persistence in every value. 

Table 9. Contingency table for the cutoff 
probability value of 0.61. Probability values ≥ 0.61 
were considered a ‘yes’ forecast, and values < 0.61 
were considered a ‘no’ forecast for lightning 
occurrence. Accuracy measure and skill score 
values for the equations and persistence are shown 
beneath the contingency table. 

Observation 
 

Yes No 

Yes 84 42 Probability 
Forecast 

(0.61) No 28 103 

Equations: 
POD = 75% FAR = 33% HR = 73% 
CSI = 0.55 HSS = 0.45 KSS = 0.46 
Persistence: 
POD = 67% FAR = 37% HR = 68% 
CSI = 0.48 HSS = 0.36 KSS = 0.34 

4.3.5. Equation Performance Summary 

All four equation performance measures indicated that the equations showed an increase in skill over daily and 
monthly lightning climatology, persistence, and the flow regime lightning probabilities. The equations also 
demonstrated good reliability, an ability to distinguish between non-lightning and lightning days, and improved 
standard categorical accuracy measures and skill scores over persistence. The increase in skill over persistence seen 
in Table 7 is important since this method has been shown to outperform the NPTI, the current objective tool used for 
daily thunderstorm forecasting. 

Three of the tests, however, showed a tendency for the equations to over-forecast the probability of lightning 
occurrence, i.e. high probability values were calculated when no lightning was observed by CGLSS in the area of 
interest on a considerable number of days. The explanation for the equations’ tendency to over-forecast as seen in 
Figures 8 and 9 and the FAR in Table 9 was not fully explored. It could be that cloud-to-ground lightning occurred 
near but not within the area of interest on those days. It is also possible that LDAR signals existed over the area with 
no CGLSS signatures. As stated in Section 2, LDAR data were not used in this study due to the considerable size of 
the datasets and the shorter POR available. Finally, it is possible that certain atmospheric parameters acting to 
suppress convection on those days are not represented by the predictors in the equations. Forecasters should keep in 
mind the equations’ slight tendency to over-forecast lightning when using the tool. 
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5. Graphical User Interface 

Results from the equation testing in Section 4.3 indicate that the equations developed in this task outperform 
persistence and, therefore, the NPTI. Based on these results, the 45 WS requested that the equations be transitioned 
into operations, and that a GUI be developed to facilitate user-friendly input and fast output. A GUI was developed 
using Microsoft® Excel© Visual Basic®. The 45 WS was involved in the GUI development by providing comments 
and suggestions on the design to ensure that the final product addressed their operational needs. 

The GUI was built within an Excel workbook. It accesses data in specific worksheets based on user input. The 
GUI itself has three basic dialog boxes. The first asks for the date, the second asks for equation predictor values, and 
the third displays the equation output. The workbook values and GUI code are all password-protected and cannot be 
changed by the user. 

5.1. Excel Workbook 

The Excel workbook in which the GUI resides contains six worksheets. The first worksheet contains brief 
instructions on how to start and use the GUI. It is recommended that first-time users read these instructions in their 
entirety before using the GUI. The other five worksheets contain information for each individual month. The 
information on these sheets includes the  

• Predictor names and their coefficients in the equations, 
• Flow regime names and their probabilities of lightning occurrence, 
• Climatological lightning probability for each day, 
• Minimum, maximum, median, mean, and first and third quartile values of the observed sounding 

stability indices, 
• Range of valid values in the GUI for the stability indices, and 
• Stability index values associated with convection. 

The first worksheet, named Introduction, is displayed automatically upon opening the Excel file. There are three 
ways to initiate the GUI, all explained at the beginning of the instructions in the Introduction worksheet. When the 
GUI is initiated, the first dialog box requesting the date is displayed. After choosing a month and day in this dialog 
box and continuing, the worksheet corresponding to the chosen month is displayed along with the second dialog 
box. This allows the user to view all the possible parameter values as described in the above list for use in a 
particular month’s equation. When the user is finished and exits out of all the dialog boxes, the Introduction 
worksheet will be displayed again before closing the file. 

5.2. Current Date Dialog Box 

When the user initiates the GUI, a dialog box is displayed that queries the user for the current month and day, 
shown in Figure 11. A drop-down list is shown for each parameter by clicking on the down-arrow to the right of the 
text boxes containing the Month and Day values. Choosing the month determines which equation will be used, and 
choosing the day determines which daily lightning climatology value will be used as a predictor in the equation. The 
user must choose a value from the Month drop-down list, but has the option of entering a Day value manually or 
through the Day drop-down list. The Day drop-down list will only have as many choices as there are days in the 
month. If a user inputs a day value manually that does not exist in a particular month, e.g. 31 for June, an error 
message will be displayed. It is important to choose the correct month and day as these values are used to determine 
what daily lightning climatology value will be used in the equations. 

Choosing the “Continue…” button causes the equation parameter dialog box and the worksheet for the chosen 
month to be displayed. Choosing the “Cancel” button will close the GUI and return the worksheet display to the 
Introduction worksheet. 

 29



 
Figure 11. The first dialog box in the GUI queries the 
user for the Month and Day values. Month and Day are 
chosen by clicking on the down arrows next to each and 
choosing from the drop-down lists. The Cancel button 
exits from the GUI, the Continue button brings up the 
next dialog box. 

5.3. Equation Predictor Dialog Boxes 

After clicking the ‘Continue…’ button in the current date dialog box, an equation predictor dialog box is 
displayed in which predictor values can be chosen. There are five distinct equation predictor dialog boxes, one for 
each month since each has a different equation. The dialog boxes for each month are displayed in Figures 12 – 16. 
Each dialog box contains elements that must be changed by the user, either by making a choice between two or more 
elements or entering a value. All choices must be made and values entered before a probability can be calculated. 
Choosing the “Calculate Probability…” button will cause calculation of the equation using the choices and values 
input by the user, and output from the equation will be displayed in the equation output dialog box. Choosing the 
“New Date” button will close the equation predictor dialog box and return control to the date dialog box.  

5.3.1. Persistence and Flow Regime 

There are two features common to all five equation predictor dialog boxes: one frame titled Persistence and 
another frame titled Flow Regime. The first is the choice for persistence, whether or not lightning occurred in the 
area the previous day. The user will choose ‘Yes’ or ‘No’ by clicking in the white circle next to the choice. The 
default choice is ‘Yes’. The second is the choice for the flow regime of the day. The user determines the flow regime 
for the day, then clicks in the white circle next to the appropriate choice. The default choice is for southwest (SW) 
flow. Note that for May and September, there are two southeast (SE) flow regimes (Figures 12 and 16), while for 
June, July, and August there is only one SE flow regime (Figures 13 – 15). The climatological characteristics of the 
SE flow regimes in the latter group were sufficiently similar that the two regimes were combined into one (Lambert 
2004a). The user can choose only one item under Persistence and only one item under Flow Regime. 

As stated in Section 2, the 1200 UTC soundings at MIA, TBW, and JAX were used to determine the flow 
regime. These soundings cannot be used to determine the flow regime of the day in real-time operations since the 
morning briefing occurs at 1100 UTC. It is not recommended that the forecasters use the 0000 UTC soundings from 
the previous evening since the large-scale low level flow may be disrupted by afternoon convective circulations. 
There are several data sources to help forecasters determine the flow regime of the day before the briefing, including 
surface observations and model output. 

5.3.2. Sounding Parameters 

The other predictors in the equation parameter dialog boxes are values taken from the 1000 UTC XMR 
sounding. Their initial values are set to the climatological medians for each month in an effort to minimize 
forecaster effort in changing the value. The forecaster will initially see a -999 for each sounding parameter value as 
a signal that a value for that parameter has not yet been input. If the user forgets to input values and clicks the 
“Calculate Probability…” button, an error message will be triggered that tells the user to input an appropriate value 
for each parameter. Values for the sounding parameters come from the MIDDS Skew-T program. There are a total 
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of six parameters in different combinations for each month: TI, T500, RH, LI, TT, and KI. All are directly available 
from the Skew-T program except TI and RH. The TI is calculated with the equation TI = KI – LI. The RH should be 
calculated using a depth-weighted average of observed relative humidities in the 800-600 mb layer of the sounding 
(see Equations 4 and 5). Once the values are obtained from the sounding, the user can input the values manually in 
the appropriate text box or use the up/down arrows to make the choice. 

There are also upper and lower limits on the parameter values to ensure realistic values are entered. These limits 
are shown in the cells of the worksheet that is displayed (not shown) along with the equation predictor dialog box. If 
a value is entered that is beyond the upper or lower limit, an error message will be triggered that tells the user to 
input an appropriate value. The upper and lower limits along with the summary values of mean, median, minimum, 
maximum, and first and third quartiles for each parameter in each month are shown in Table 10. The summary 
values were calculated from the entire dataset in the POR 1989–2003. 

 
Figure 12. This dialog box contains choices for the 
predictors in the May equation. Persistence and Flow 
Regime are chosen by clicking one of the option 
buttons in each section. TI and T500 are chosen by 
entering their values manually or using the up/down 
arrows to the right of the text boxes. The “New Date” 
button closes this dialog box and returns control to 
the current date dialog box (Figure 11). The 
“Calculate Probability…” button displays the 
equation output dialog box (Section 5.4). 

 
Figure 13. Same as Figure 12 except for June, with 
the SE-1 and SE-2 flow regimes combined into one 
SE flow regime, and with sounding parameters LI 
and RH. 
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Figure 14. Same as Figure 12 except for July, with 
the SE-1 and SE-2 flow regimes combined into one 
SE flow regime, and with sounding parameters TT 
and RH. 

Figure 15. Same as Figure 12 except for August, 
with the SE-1 and SE-2 flow regimes combined into 
one SE flow regime, and with sounding parameters 
KI, TT, and RH. 
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Figure 16. Same as Figure 12 except for September, 
and with sounding parameters LI and RH. 
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Table 10. Summary values for each of the predictors in the POR 1989–2003. The last two rows contain the 
upper and lower limits of the values allowed in the GUI. 

May June July August September Observed 
Data 

Summary TI T500 LI RH TT RH KI TT RH LI RH 

Minimum -38 -17 -7 15 33 18 -10 26 19 -6 15
1st Quartile 8 -11 -4 45 43 46 26 42 44 -4 46
Median 17 -10 -2 62 45 62 31 44 60 -2 62
Mean 17 -10 -2 60 45 60 29 44 58 -2 60
3rd Quartile 30 -8 -1 76 47 72 34 46 73 -1 75
Maximum 44 -5 10 98 53 95 43 54 91 9 96
Data Value Range Allowed in GUI 

Minimum -70 -30 -20 0 0 0 -50 0 0 -20 0
Maximum 70 20 30 100 70 100 60 70 100 30 100

5.4. Equation Output Dialog Box 

After making all choices and entering all values in the equation predictor dialog box, the user should click on 
the “Calculate Probability…” button. This executes the equation and displays the third and final equation output 
dialog box (Figure 17). The lightning probability for the day as determined by the equation is displayed as a 
percentage value. When the user clicks the “Calculate Another Probability” button at the bottom, this dialog box is 
closed and control is returned to the equation predictor dialog box. The user can make new choices for the predictors 
and calculate a new probability, or click the “New Date” button and return control to the first dialog box. 

 
Figure 17. The equation output dialog box in the GUI 
containing the probability of lighting for the day based 
on the inputs from the date and equation predictor 
dialog boxes. 
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5.5. Predictor Responses 

As an independent test, Mr. Roeder of the 45 WS generated curve and bar charts for each month to determine 
the response of the calculated lightning probability to changes in predictor values while holding all other predictor 
values constant. This was done to test the GUI for calculation errors and to determine how changes in the individual 
predictor values affect the output probability values. In order to use a constant daily lightning climatology value, the 
same day of the month was used in each monthly test. For consistency, the 15th of the month was used for all 5 
months. 

5.5.1. May 

The response charts for May 15 are shown in Figure 18. The probability response curves due to changes in the 
predictors TI and T500 are given in Figure 18a. The flow regime and persistence values were held constant at SW and 
Yes, respectively. The predictor value ranges in Figure 18a covered their observed ranges in the POR (Table 10) for 
May. As TI was varied from -20 to 50, T500 was held constant at its observed May median value of -10 °C. 
Conversely, as T500 was varied from -20 to 0 °C, TI was held at its median value of 17. The curves are non-linear 
and shaped similarly to the logistic regression curve in Figure 6. It is also apparent that the probabilities were more 
sensitive to changes in T500 than in TI. In Table 10, the minimum observed value for TI in May was -38, but the 
minimum TI value in the chart is -20. The x-axis range did not go below -20 because it was obvious from the slope 
of the curve that the probability values would change little beyond that point. 

The bar chart in Figure 18b shows the alternate case of varying flow regime and persistence with TI and T500 
held constant at their median values. The SE-1 flow regime produced the highest probability, and the probabilities 
were higher for every flow regime when persistence = Yes. The probability values are quite low for all flow regimes 
and both persistence categories, ranging from 4% (NE, No) to 41% (SE-1, Yes). This is likely an artifact of the 
lightning climatology for May. Lightning occurred on only 97 of the 420 available days in May, yielding ~23% for 
the monthly climatology of lightning occurrence. The median value for TI is below 20, which is the threshold above 
which thunderstorm formation becomes probable. Even when TI = 20 in Figure 18a, the probability is still only 
37%. Even though the median value for T500 is conducive for thunderstorm formation, this predictor contributed 
least to the reduction in residual deviance and has a relatively small effect on the probability outcome. In Figure 18a, 
T500 = -10 °C yielded ~30% probability of lightning occurrence. It follows that for days that exhibit values typical of 
May climatology, the calculated probabilities will tend to be low. 

Equation Response Curves for May 15
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Figure 18. Equation response charts for May 15: (a) change in probability due to changes in values of TI and T500 
with flow regime = SW, persistence = Yes, TI = 17 when T500 was varied from -20 to 0 °C (blue curve), and T500 = 
-10 °C when TI was varied from -20 to 50 (purple curve); (b) changes in probability due to changes in flow 
regime and persistence with TI = 17 and T500 = -10 °C. The red bars are for persistence = Yes and the blue bars for 
persistence = No. 
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5.5.2. June 

The response charts for June 15 are shown in Figure 19. The probability response curves due to changes in the 
predictors LI and RH are given in Figure 19a. The flow regime and persistence values were held constant at SW and 
Yes, respectively. The predictor value ranges in Figure 19a covered their observed ranges in the POR for June 
(Table 10). As LI was varied from -10 to 10, RH was held constant at its observed June median value of 62%. 
Conversely, as RH was varied from 15 to 100%, LI was held at its median value of -2. The probabilities appear 
more sensitive to changes in LI than RH. The curves are non-linear, but do not approach the lower probability values 
asymptotically as do the curves for May. The lowest probability values are slightly greater than 20% for both 
predictors causing the curves to be truncated before reaching probabilities closer to 0. 

The bar chart in Figure 19b shows the alternate case of varying flow regime and persistence with LI and RH 
held constant at their median values. The SW flow regime produced the highest probabilities. The other flow 
regimes were similar to each other except for NE, which had the lowest probabilities for both persistence categories. 
The probabilities were noticeably higher for every flow regime when persistence = Yes. Persistence ranked second 
in its reduction of residual deviance and, as such, had a large effect on the calculated probability. Overall, the 
probability values are much higher than the corresponding values for May. Unlike the low occurrence of convection 
in May, the monthly lightning climatology for June was 57%. The flow regime ranked fourth in the equation, which 
would indicate a minimal effect on the calculated probability. However, the predictor value for the NE flow regime 
is sufficiently small as to significantly decrease the probability of lightning occurrence when present. 

Equation Response Curves for June 15
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Figure 19. Equation response charts for June 15: (a) change in probability due to changes in the values of LI and 
RH with flow regime = SW, persistence = Yes, LI = -2 when RH was varied from 15 to 100% (purple curve), and 
RH = 62% when LI was varied from -10 to 10 (blue curve); (b) changes in probability due to changes in flow 
regime and persistence with LI = -2 and RH = 62%. The red bars are for persistence = Yes and the blue bars for 
persistence = No. 
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5.5.3. July 

The response charts for July 15 are shown in Figure 20. The probability response curves due to changes in the 
predictors TT and RH are given in Figure 20a. The flow regime and persistence values were held constant at SW 
and Yes, respectively. The predictor value ranges in Figure 20a covered their observed ranges in the POR for July 
(Table 10). As TT was varied from 30 – 55, RH was held constant at its observed July median value of 62%. 
Conversely, as RH was varied from 15 to 100%, TT was held at its median value of 45. The probabilities are more 
sensitive to changes in TT than RH at the values used for these charts. The TT curve exhibits the same truncation 
issue as seen in Figure 19a for June, but the RH curve approaches 1 slowly beginning at the lowest probability of 
58% for 0% humidity. The values along the RH curve also seem to indicate that changes in RH would have a small 
effect on the calculated probability. It ranked third among the predictors for July whereas TT ranked first in its 
reduction of the residual deviance. 

The bar chart in Figure 20b shows the alternate case of varying flow regime and persistence with TT and RH 
held constant at their median values. The SW flow regime produced the highest probabilities, and the probabilities 
were higher for every flow regime when persistence = Yes. Overall, the probability values are quite high for each 
flow regime ranging from 49% (NE, No) to 84% (SW, Yes). The flow regime ranked last in terms of reduction in 
residual deviance, and had only a small effect on the calculated probability. The daily lightning climatology value 
for July 15 is 66%. Although the daily lightning climatology ranked fourth just ahead of flow regime in its reduction 
of residual deviance, it still shows that July was an active lightning month and calculated probability values will tend 
to be high. 

Equation Response Curves for July 15
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Figure 20. Equation response charts for July 15: (a) change in probability due to changes in the values of TT and 
RH with flow regime = SW, persistence = Yes, TT = 45 when RH was varied from 15 to 100% (purple curve), 
and RH = 62% when TT was varied from 30 to 55 (blue curve); (b) changes in probability due to changes in flow 
regime and persistence with TT = 45 and RH = 62%. The red bars are for persistence = Yes and the blue bars for 
persistence = No. 
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5.5.4. August 

The response charts for August 15 are shown in Figure 21. The probability response curves due to changes in 
the predictors TT, KI, and RH are given in Figure 21a. The flow regime and persistence values were held constant at 
SW and Yes, respectively. The predictor value ranges in Figure 21a covered their observed ranges in the POR for 
August (Table 10). As TT was varied from 25 to 55, KI and RH were held constant at their median values of 31 and 
60%, respectively. As KI was varied from -10 to 50, TT and RH were held at their median values of 44 and 60%, 
respectively. Finally, as RH was varied from 15 to 100%, TT and KI were held at their median values of 44 and 31, 
respectively. The probabilities are least sensitive to changes in RH and most sensitive to changes in TT. The TT and 
KI curves exhibit the same truncation issue described earlier, and the RH curve approaches 1 asymptotically 
beginning at the lowest probability of 66% for 0% humidity. The values along the RH curve also seem to indicate 
that changes in RH would have a small effect on the calculated probability. It ranked fifth among the six predictors 
for August whereas KI ranked first in its reduction of the residual deviance. 

The bar chart in Figure 21b shows the alternate case of varying flow regime and persistence with TT, KI, and 
RH held constant at their median values. The SW and NW flow regimes produced the highest probabilities with SW 
having the largest values. The probabilities were higher for every flow regime when persistence = Yes, but only by a 
small amount. Persistence ranked last in its reduction of the residual deviance for August lightning occurrence and 
had only a small effect on the calculated probability. The NE flow regime produced the lowest probabilities by far. 
The flow regime lightning probability for NE flow in August is 23%. Since the flow regime probability ranked 
second in the equation, it had a large effect on the probability values resulting in a low value for the NE regime. 
Overall, the probability values exhibit a large range from 25% (NE, No) to 87% (SW, Yes).  
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Figure 21. Equation response charts for August 15: (a) change in probability due to changes in the values of TT, 
KI, and RH with flow regime = SW, persistence = Yes, TT = 44 and KI = 31 when RH was varied from 15 to 
100% (purple curve), TT = 44 and RH = 60% when KI was varied from -10 to 50 (green curve), and KI = 31 and 
RH = 60% when TT was varied from 25 to 55 (blue curve); (b) changes in probability due to changes in flow 
regime and persistence with TT = 44, KI = 31, and RH = 60%. The red bars are for persistence = Yes and the blue 
bars for persistence = No. 
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5.5.5. September 

The response charts for September 15 are shown in Figure 22. The probability response curves due to changes 
in the predictors LI and RH are given in Figure 22a. The flow regime and persistence values were held constant at 
SW and Yes, respectively. The predictor value ranges in Figure 22a covered their observed ranges in the POR for 
September (Table 10). As LI was varied from -10 to 10, RH was held constant at its median value of 62%. As RH 
was varied from 15 to 100%, LI was held at its median value of -2. The probabilities are least sensitive to changes in 
RH and most sensitive to changes in LI. The curves exhibit the same truncation issue and have similar values to 
those in June.  

The bar chart in Figure 22b shows the alternate case of varying flow regime and persistence with LI and RH 
held constant at their median values. The SW flow regime produced the highest probability and SE-1 the second 
highest, and the probabilities were higher for every flow regime when persistence = Yes. The percent increase in 
probability from a No to a Yes category in persistence is large for each flow regime: over 100% for SE-2, NW, NE, 
and Other, 50% for SW, and 70% for SE-1 flow regimes. Persistence ranked first among all predictors in its 
reduction of residual deviance and has a large effect on the calculated probability. The NW flow regime produced 
the lowest probabilities; however, there were only seven days with this flow regime in the POR for September and 
lightning did not occur on any of those days. There is also a large difference in probability between the flow regimes 
ranging from 3% (NW, No) to 75% (SW, Yes). The flow regime probability ranked second in its reduction of 
residual deviance in the equation. As with persistence, it follows that flow regime also had a large influence on the 
calculated probability. While the climatological median values of the stability parameters are at least minimally 
conducive for lightning occurrence, the probability values in Figure 22 are very dependent on the choice for 
persistence and flow regime. 
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Figure 22. Equation response charts for September 15: (a) change in probability due to changes in the values of LI 
and RH with flow regime = SW, persistence = Yes, LI = -2 when RH was varied from 15 to 100% (purple curve), 
and RH = 62% when LI was varied from -10 to 10 (blue curve); (b) changes in probability due to changes in flow 
regime and persistence with LI = -2 and RH = 62%. The red bars are for persistence = Yes and the blue bars for 
persistence = No. 
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6. Summary and Conclusions 

Five logistic regression equations were created that predict the probability of cloud-to-ground lightning 
occurrence for the day in the KSC/CCAFS area for each month in the warm season. These equations integrated the 
results from several studies over recent years to improve thunderstorm forecasting at KSC/CCAFS. All of the 
equations outperform persistence, which is known to outperform NPTI, the current objective tool used in 45 WS 
lightning forecasting operations. The equations also performed well in other tests. As a result, the new equations will 
be added to the current set of tools used by the 45 WS to determine the probability of lightning for their daily 
planning forecast. 

The results from these equations are meant to be used as first-guess guidance when developing the lightning 
probability forecast for the day. They provide an objective base from which forecasters can use other observations, 
model data, consultation with other forecasters, and their own experience to create the final lightning probability for 
the 1100 UTC briefing. 

6.1. Equation Performance Review 

All four equation performance tests described in Section 4.3 showed an increase in skill over several standard 
forecast methods, good reliability, an ability to distinguish between non-lightning and lightning days, and improved 
accuracy measures and skill scores over those for persistence. Of particular interest was the increase in skill over 
persistence since this method has been shown to outperform the NPTI. 

Three of the tests, however, showed a tendency of the equations to over-forecast the probability of lightning 
occurrence, i.e. high probability values were calculated when no lightning was observed by CGLSS. The 
explanation for the tendency to over-forecast was not fully explored. It could be that lightning occurred near the area 
of interest but not in it on those days. It is also possible that LDAR signals existed over the area with no CGLSS 
signatures. Finally, it is possible that certain atmospheric parameters acting to suppress convection on those days 
were not represented by the predictors in the equation. 

At the request of Mr. Roeder, Mr. Castor Mendez-Vigo, a Project Emeritus Program volunteer for the 45 WS, 
conducted a comparison of performance between the equation output and lightning probability forecasts issued by 
45 WS forecasts in the 2004 warm season. Data from September were not used due to the large number of days in 
which operations was suspended due to hurricane evacuations. He calculated the MSE values (Equation 9) for each 
forecast method, then calculated the SS (Equation 10) to determine the percent improvement or degradation of the 
equation forecasts compared to the 45 WS forecasts. The SS values for the equation probabilities were 

• Overall: -20% (degradation compared to 45 WS forecast), 
• May: -8% (degradation compared to 45 WS forecast), 
• June: -28% (degradation compared to 45 WS forecast), 
• July: -41% (degradation compared to 45 WS forecast), and 
• August: 17% (improvement compared to 45 WS forecast). 

The forecasters outperformed the equations in three of the four months, and for the whole season combined. August 
was the only month in which the equations performed better than the forecasters. These overall results were 
expected. Forecasters have other model and observational data available to make the probability forecast, as well as 
their own experience and the experience of other forecasters on the team. Therefore, they are able to fine tune the 
forecast to a probability that is more realistic than that produced by an equation that considers only five or six 
parameters. 

The results from the equation tests underscore the importance of using this tool as a first-guess only, not as the 
sole source of determining the lightning probability for the day. Forecasters should keep in mind the equations’ 
slight tendency to over-forecast lightning when using the tool. However, considering that the equations outperform 
NPTI and persistence, this first-guess probability will likely provide better guidance than either of these two forecast 
methods. 
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6.2. Graphical User Interface Issues 

The GUI described in Section 5 interfaces with the equations and facilitates user-friendly input and fast output 
of the lightning probability for the day. Most of the input values are readily available to the user through the MIDDS 
Skew-T program. Three values are not readily available and must be determined by the user prior to using the GUI.  

One of the three values is the flow regime for the day. The very first step forecasters should take before 
attempting to determine the flow regime is to refer to Lambert (2004a) and Section 3.2.2 of this report to understand 
how a flow regime was determined in this work. Since 1200 UTC soundings were used to create the flow regime 
climatologies but the forecast is issued by 1100 UTC, the forecasters are presented with a dilemma on what data 
source to use. It is not recommended that forecasters use data from the 0000 UTC soundings taken the previous 
evening as the larger-scale low-level flow pattern may be obscured by afternoon convection. There are several 
sources forecasters can used to discern the flow regime for the day: 

• Pressure and wind field output from the most recent initializations of the 
– Rapid Update Cycle (RUC), 
– North American Mesoscale (NAM, formerly Eta), and  
– Global Forecast Systems (GFS) models. 

• Area Forecast Discussion on the NWS MLB web site at http://www.srh.noaa.gov/mlb/forecast.html 
almost always discusses the position of the ridge and the low level flow for the day during the warm 
season, and 

• Hourly surface observations of wind direction. 

The surface wind directions should be used with caution as winds could be light and variable in the early morning 
hours. They should be used only in combination with one of the other data types in the above list. Most of the 
identifiable flow regimes in the warm season are due to the position of the ridge extending westward from the high 
pressure center over the Atlantic Ocean. The morning NWS MLB Area Forecast Discussion also offers an excellent 
discussion of other factors influencing the formation of convection for the day. 

The other two values that must be determined are TI and RH. The TI is calculated simply with the equation 
TI = KI – LI. 

The values in the right-hand side of the equation, KI and LI, are readily available from the sounding on MIDDS. 
This variable is only used in the May equation, but was the most important in terms of reduction in residual 
deviance. The RH should be calculated using the same depth-weighted average used in this work, however that 
process could be too time-consuming in an operational setting. Forecasters can estimate this value over 
KSC/CCAFS from the most recent run of the Advanced Regional Prediction System (ARPS) Data Analysis System 
(ADAS). A contour plot of the 850–650 mb RH generated by ADAS is posted on the NWS MLB web site at 

http://www.srh.noaa.gov/mlb/ldis/4km/layer_avg_850-650.gif. 
This plot shows the layer-averaged RH field over the Florida peninsula and adjacent waters. Although the 850–650 
mb layer is not the same as that used in this study, it is only offset by 50 mb and likely similar in value to that of the 
800–600 mb RH. Forecasters could also calculate a straight average of all the relative humidity values in the 800–
600 mb layer from the XMR sounding. No tests were conducted to determine how different this value would be 
from a depth-weighted value. It is also possible to build a routine in MIDDS that could calculate this value 
automatically from the 1000 UTC XMR sounding. This option should be strongly considered as a solution as it 
would give the forecasters the ability to determine the RH from the sounding quickly. 
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6.3. Future Work 

At the most recent AMU Tasking Meeting in February 2005, a task to make some changes to the equations and 
tool was approved. The dataset described in this report will be used to make three predictor modifications in an 
attempt to improve equation performance. The first will be to use a new Gaussian filter developed by Mr. Roeder of 
the 45 WS that produces a smoother curve of the warm season daily lightning climatology. This will create new 
values for this predictor. Secondly, the 1000–700 mb average wind direction in the 1000 UTC XMR sounding will 
be calculated and used to confirm the flow regime of the day, especially in situations where the subtropical ridge is 
just north or south of the area (SW-2 and SE-1, respectively). New flow regime climatologies will be calculated 
based on the new information. For the third modification an iterative technique will be used to determine an optimal 
layer for the average relative humidity value. The 800–600 mb layer was used for NPTI and perpetuated in 
following studies with no attempt to test other layers. If another layer is found, it will be used to calculate RH for the 
equations. These modifications are likely to create new predictor values and necessitate re-development of the 
equations. At the very least, the predictors will have new constants associated with them in the equations. It is also 
possible that different predictors would be chosen for the equations. 

Once the above predictor modifications are made, a MIDDS tool to access the equations will be developed to 
replace the GUI described in this report. The 45 WS forecasters already use MIDDS routinely to view data, so 
making the equations available in MIDDS would reduce the number of different computer platforms the forecasters 
must access to gather information. Most importantly, the MIDDS tool will be able to automatically retrieve all data 
within the MIDDS that are needed by the equations, reducing time spent by the forecaster retrieving and entering 
values. One exception is that the forecaster will have to manually enter the flow regime of the day and determine its 
value from other sources since the 1200 UTC soundings will not be available (see Section 6.2). Work on developing 
the new equations and the MIDDS tool will be complete in time for the 2006 warm season. 

There are nine other improvements desired by the 45 WS but not yet tasked to the AMU: 

1) Automate the daily Weekly Planning Forecast in addition to the 24-Hour Planning Forecast, 
2) Investigate if a bias correction technique to correct for over forecasting can improve performance, 
3) Investigate the secondary maximum in lightning non-occurrence when forecast probabilities are high, 

as seen in Figure 8, to determine the cause of the maximum and any possible corrective action, 
4) Create an equation using data from June, July, and August, the months with the highest occurrence of 

lighting, to determine if the increased sample size produces an equation that can outperform the 
individual month equations, 

5) Once enough data are collected, create equations for the first and second halves of May and September 
and determine if they outperform the full-month equations. Such equations would account for the 
climatological changes within each month as the convective season spins up in the second half of May 
and spins down in the second half of September, 

6) Determine if the high percentage of Other flow regimes can be reduced by identifying new regimes or 
modifying the wind direction thresholds of the current flow regime definitions, 

7) Change the lightning verification area to include just the KSC/CCAFS advisory areas, excluding the 
Astrotech advisory circle seen in Figure 2, 

8) Use the available 45 WS Phase-II advisory archive as ground truth proxy for lightning occurrence in 
addition to CGLSS data to better match the 45 WS lightning advisory procedure, and 

9) Investigate the role of persistence when the flow regime changes from the previous day. 

The next step should be to collect additional data with which to develop more robust statistical relationships in 
the equations. More data are also needed for the verification dataset to determine the actual extent of over-
forecasting. More data for equation development may help alleviate this issue. New techniques may be available 
over the next few years that could also help improve equation performance. Evaluation of equation performance 
should be done continuously to determine the tool’s strengths and weaknesses, which can be used to guide future 
modifications. 
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List of Acronyms 

45 WS 45th Weather Squadron 
AMU Applied Meteorology Unit 
AYS Waycross, GA 3-letter Identifier 
CAPE Convective Available Potential Energy 
CCAFS Cape Canaveral Air Force Station 
CGLSS Cloud-to-Ground Lightning 

Surveillance System 
CIN Convective Inhibition 
CSI Critical Success Index 
CSR Computer Sciences Raytheon 
CT Cross Totals 
EDT Eastern Daylight Savings Time 
FAR False Alarm Rate 
GUI Graphical User Interface 
HR Hit Rate 
HSS Heidke Skill Score 
JAX Jacksonville, FL 3-letter Identifier 
KI K-Index 
KSC Kennedy Space Center 
KSS Kuipers Skill Score 
LCL Lifting Condensation Level 
LDAR Lightning Detection And Ranging 
LFC Level of Free Convection 
LI Lifted Index 
LNPTI Logistic Neumann-Pfeffer 

Thunderstorm Index 
McIDAS Man-computer Interactive Data Access 

System 
MIA Miami, FL 3-letter Identifier 
MIDDS Meteorological Interactive Data Display 

System 
MSE Mean Squared Error 
NCDC National Climatic Data Center 

NE Northeast Flow Regime 
NLDN National Lightning Detection Network 
NPTI Neumann-Pfeffer Thunderstorm Index 
NW Northwest Flow Regime 
NWS MLB National Weather Service in 

Melbourne, FL 
PBI West Palm Beach, FL 3-letter Identifier 
PC Personal Computer 
POD Probability of Detection 
POR Period of Record 
PW Precipitable Water 
RH 800–600 mb Average Relative 

Humidity 
SE-1 Southeast-1 Flow Regime 
SE-2 Southeast-2 Flow Regime 
SLTI Stratified Logistic Thunderstorm Index 
SMG Spaceflight Meteorology Group 
SS Brier Skill Score 
SSI Showalter Stability Index 
SW-1 Southwest-1 Flow Regime 
SW-2 Southwest-2 Flow Regime 
SWEAT Severe Weather ThrEAT Index 
T500 Temperature at 500 mb 
TBW Tampa, FL 3-letter Identifier 
TI Thompson Index 
TT Total Totals 
TTS Shuttle Landing Facility 3-letter 

Identifier 
UTC Universal Coordinated Time 
WMO World Meteorological Organization 
WOC Weather Operations Center 
XMR CCAFS Balloon Facility 3-letter 

Identifier 
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NOTICE 

Mention of a copyrighted, trademarked or proprietary product, service, or document does not constitute 
endorsement thereof by the author, ENSCO, Inc., the AMU, the National Aeronautics and Space Administration, or 
the United States Government.  Any such mention is solely to inform the reader of the resources used to conduct the 
work reported herein. 
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