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Executive Summary 

During the analysis for the Shuttle Landing Facility Cloud Cover Study:  
Climatological Analysis and Two Tenths Cloud Cover Rule Evaluation (Atchison et al. 
1992), we noticed some regularities in the data that led us to believe artificial neural 
network technology could be used to develop potential forecasting tools.  Artificial 
neural network models have the ability to resolve many nonlinear relationships and 
handle highly correlated data making them very appropriate for application to 
meteorological problems. 

Subsequently in 1993, the AMU was tasked to develop a prototype forecast tool using 
artificial neural network technology.  The priority and level of the AMU’s other taskings 
left very limited resources and time to devote to the artificial neural network 
development and implementation.  Since we had already assimilated five plus year 
surface observation and upper air data bases during the cloud cover study, we estimated 
we would be able to develop an operational prototype neural network model within the 
limited resource constraints.  We began development of the ANN in September 1993 and 
continued the effort through the middle of January 1994 at about one third of a full time 
equivalent effort. 

We began the project by attempting to develop an artificial neural network using the 
surface data only as inputs.  Selection of the surface data training set consisted of first 
dividing the data into subsets according to the observed change in cloud cover over two 
hours, then randomly selecting a uniform distribution of training records from the 
subsets.  Initial selection of the actual input variables to use in the training set consisted 
of polling the user community for their suggestions of surface observations which may be 
indicative of near term cloud cover changes.  Trial and error methodology was used 
thereafter to adjust the input variables. 

Two different artificial networks were generated, one trained and tested with data 
spanning the entire year and another trained and tested with summer time (May - 
September) data only.  Briefly, the models were generally able to differentiate between 
significant cloud cover increases and decreases, but they did not do well predicting the 
magnitude of the change.   

Rather than exert more effort performing a detailed analysis of the surface 
observations in an attempt to improve the networks’ performance, we felt it would be 
more beneficial to include the upper air data as input to the network. 

Addition of the upper air data did not, however, have the desired effect.  The 
temporal resolution of the rawinsondes was much less than that of the surface 
observations.  The amount of cloud cover would change dramatically in both directions 
while the measured upper air data did not change at all. This resulted in the neural 
network tending to output a zero change in cloud cover all the time.  The upper air data 
were incorporated into the network towards the end of the project and time constraints 
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did not allow us to further adjust the upper air representations in the neural network 
model. 

We underestimated the effort necessary to develop an operational neural network 
prototype.  The surface observations alone did not provide easily detectable patterns for 
the neural network model to recognize and associate with near-term cloud cover changes.  
Consequently, the neural network model did not perform as well as expected.   The 
temporal resolution of the upper air data prevented it from being exploited by the neural 
network model within the allotted time schedule.  Due to the greater priority of other 
tasks, we did not pursue the work further as it was unclear how much effort would be 
required to improve the model’s performance to the level where it would be a useful 
forecast tool. 

Despite the failure to develop an operational prototype within the given time 
schedule, this project did demonstrate that neural networks may have potential as 
forecasting tools.  Even when provided the limited data already available within the 
AMU, the neural network did exhibit some ability to learn.  The conclusion within this 
report suggests some directions for continuation of this project should the resources 
become available.  

 vii 
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1.0 Introduction 

This brief report describes the Applied Meteorology Unit’s development and 
evaluation of an artificial neural network for predicting cloud cover at the Shuttle 
Landing Facility (SLF).  This first section describes the motivation for the project and 
provides an introduction to artificial neural network models.  Section 2 describes the 
development of the neural network model and summarizes its effectiveness.  Section 3 
summarizes the evaluation analysis performed on the neural network model; and finally, 
Section 4 summarizes the project’s successes and failures.  

1.1 Project Background and Motivation 

During our analysis for the Shuttle Landing Facility Cloud Cover Study:  
Climatological Analysis and Two Tenths Cloud Cover Rule Evaluation (Atchison et al. 
1992), we noticed some regularities in the data that led us to believe artificial neural 
network technology could be used to develop potential forecasting tools.  Artificial 
neural network models have the ability to resolve many nonlinear relationships and 
handle highly correlated data making them appropriate for application to meteorological 
problems. 

The shuttle landing forecast is a challenging forecast given the very specific time and 
spatial constraints associated with the operation.  The decision to land at a given site 
must be made prior to the de-orbit burn, approximately 90 minutes before the actual 
landing time.  Because of Florida’s dynamic weather, NASA developed what is known as 
the KSC two-tenths cloud cover rule to reduce the risk of attempting a shuttle landing in 
unacceptable weather.  The rule states: 

For scattered cloud layers below 10K feet, cloud cover must be observed 
to be less than or equal to 0.2 at the de-orbit burn go/no-go decision time  
(JSC Flight Rules). 

The two-tenths cloud cover rule is designed to minimize the likelihood of landing the 
shuttle during weather constraint violations related to cloud cover (i.e. ceilings, 
thunderstorms, and precipitation.).  The AMU recommended a tasking to implement an 
operational prototype neural network to forecast cloud cover that upon evaluation could 
eventually be transitioned to operational use. 

Subsequently in 1993, the AMU was tasked to develop a prototype forecast tool using 
artificial neural network technology.  The priority and level of the AMU’s other taskings 
left very limited resources and time to devote to the artificial neural network 
development and implementation.  Since we had already assimilated five plus year 
surface observation and upper air data bases during the cloud cover study, we estimated 
we could develop an operational prototype neural network model within the limited 
resource constraints.  The rest of the report documents the development of the neural 
network model and presents the evaluation of its performance. 

 1  
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1.2 Description of Artificial Neural Network Models 

This subsection provides a brief introduction to artificial neural network models.  It is 
included to provide interested readers unfamiliar with artificial neural network techniques 
a brief summary of the concepts behind artificial neural network techniques.  Traditional 
computing techniques take advantage of the computer’s architecture to solve problems 
well understood but not easily solved by human calculation.  On the other hand, some 
tasks, such as pattern recognition and motor control which are not well understood, are 
easily handled by the brain and nervous system yet elude traditional computer 
procedures.  Artificial neural networks attempt to model these poorly understood 
problems by employing a mathematical model of the brain’s structure. 

The brain consists of billions of densely interconnected neurons.  The premise behind 
artificial neural network models is that mimicking the brain’s structure of many highly 
connected processing elements will enable computers to tackle tasks they have not as of 
yet performed well.  Artificial neural networks are mathematical models derived from 
this structure.  Though biological plausibility is sometimes applied to artificial neural 
network models, they are not intended to model the actual workings inside the brain or 
nervous system. 

In general, a neural network model consists of neurons or processing elements, each 
of which is connected to other elements according to some schema by connection 
weights.  The connection weights between processing elements contain the knowledge 
stored in the artificial neural network model.  Usually, the processing elements are 
classified as input units, output units, or hidden units.  (Some neural network models 
which perform tasks such as optimization do not have specific input or output units.)  
Model input is supplied through the input units, and model output is shown on the output 
units.  The hidden elements are necessary to enable the system to learn relationships 
which are not linearly separable.  Figure 1 illustrates a typical neural netwwork model.  
The model learns by adjusting its connection weights in response to the input-output 
pairs presented to it during training.  Neural networks are trained by example, they are 
not usually programmed with a priori knowledge. 
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Figure 1.  Neural Network Model Example 

Though much of the motivation driving neural computing research has been geared 
towards development of specialized hardware, the mathematical models have been coded 
into software and proven to be valuable tools in the areas of signal processing, system 
modeling, pattern recognition, and classification. 

In neural network models for prediction, inputs and their associated outputs are 
presented to the network’s input and output processing elements, respectively.  The 
connection weights are adjusted after the input - output pair of vectors is presented to the 
network until the network is able to produce the desired output within some pre-
determined error bounds.  The algorithm for adjusting the weights depends upon the type 
of network model used.  In this application, the backward error propagation model was 
used.  Backward error propagation is described in detail in nearly all neural network text 
books (see NeuralWare 1991, Hertz, Krough, and Palmer 1991, Rumelhart and 
McClelland 1986, and Aleksander and Morton 1991). 

1.3 Planned Approach and Methodology 

As stated previously, the AMU’s resources available for the neural network 
development and implementation were limited.  Since the surface observation and upper 
air data bases were already compiled for the two-tenths cloud cover study, we believed 
we could develop a viable prototype neural network with the limited resources allocated 
to the project. 

We planned to develop a neural network training set using the surface observations as 
the primary input and to include upper air data if necessary to resolve conflicts in the 
surface observations.  The neural network would be trained to recognize surface 

 3  
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conditions indicative of future cloud cover changes and to predict the amount of cloud 
cover change over the next two hours. 

Our evaluation plan for the neural network model included testing the model under a 
variety of initial conditions and documenting its performance under those conditions.  It 
also included determining the probability of detection and false alarm rates for significant 
increases and decreases in cloud cover. 
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2.0 ANN Development and Evaluation Summary 

We began development of the ANN in September 1993 with the transfer of the 
surface observation data base resident on a PC to SAS on an IBM RS/6000 UNIX 
workstation.  The work continued through the middle of January 1994 at a level of about 
one third of a full time equivalent.  This section describes in detail the data available for 
the project and the neural network model development effort. 

2.1 Database Description 

The surface observation database developed for the AMU’s Shuttle Landing Facility 
Cloud Cover Study:  Climatological Analysis and Two Tenths Cloud Cover Rule 
Evaluation was used to train and test the neural network models. The data base contains 
hourly estimates of the following items: 

• Observations of 
- thunderstorms, 
- precipitation, 
- fog, and 
- haze, 

• Surface pressure, 
• Surface dew point, 
• Surface wind direction, 
• Surface wind speed, 
• Surface temperature, 
• Total cloud cover, 
• Tenths of cloud cover below 10 000 feet, 
• Ceiling height, and 
• Visibility. 

During the preparation of the data base for the cloud cover climatological study, the 
tenths of cloud cover below 10 000 feet were estimated manually from information on the 
Form 10’s filled out by the Range contractor weather observers located at the weather 
station adjacent to the SLF.  The tenths of cloud cover were not estimated for the hours 
when a weather constraint was violated in order to reduce the effort involved.   

Ceilings below 10 000 feet, however, are weather constraint violations, and there 
were no actual tenths of cloud cover estimates for initial times or forecast verification 
times for these conditions.  Training data records containing ceilings were essential for 
network utility (it was important to know if the cloud cover increased to over five tenths) 
so we assigned a value of seven tenths to any data record indicating a ceiling.  (This left 
weather constraint violations where a ceiling was not in effect as the only records 
systematically omitted from the training set.)  Seven tenths was used as a compromise 
since the actual cloud cover could range from six to ten tenths.  This provided the 
network with training vectors containing conditions leading to a ceiling as well as 
conditions indicating the break up of a ceiling.  The training vectors could not, however, 
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indicate whether a ceiling condition improved or worsened (i.e. cloud cover increased or 
decreased between six and ten tenths).  This may have introduced some bias to the 
network model.  

In addition to the surface observations, the AMU had previously developed a data 
base containing Cape Canaveral (station 74794) rawinsonde data from 1986 through 
1992 for the two-tenths cloud cover climatological study.  The rawinsonde data consisted 
of the following items for each record: 

• Year, 
• Month, 
• Day, 
• Altitude, 
• Wind direction, 
• Wind speed, 
• Wind shear, 
• Temperature, 
• Dew point, 
• Pressure, 
• Relative humidity, and 
• Index of refraction. 

These data were merged with the surface observations in order to provide a complete 
picture of the local atmosphere.  The upper air data were not as temporally dense as the 
surface observations, so upper air elements were repeated for several hourly data records.  
To ensure the neural network was not provided any data during training that would not be 
available in real-time, data were repeated for the hours after the sounding and preceding 
the next sounding rather than for the hours surrounding the actual sounding time which 
would be a closer representation of the actual conditions. 

2.2 Development Chronology 

We began the project by attempting to develop an artificial neural network using only 
the surface data as inputs.  Selection of the surface data training set consisted of dividing 
the data into subsets according to the observed change in cloud cover over two hours, 
then randomly selecting a uniform distribution of training records from the subsets.  The 
training data set consisted of a uniform distribution of cloud cover changes in order to 
force the neural network model to learn the surface conditions predictive of cloud cover 
changes.  If the input data reflected the true distribution of cloud cover changes, where 
the vast majority of two hour cloud cover changes were zero, the neural network could 
easily have reduced the RMS error on its output by predicting a zero change all of the 
time rather than learning the conditions indicative of a near-term cloud cover change. 

Initial selection of the actual input variables to use in the training set consisted of 
polling the user community for their suggestions of surface observations which may be 
indicative of near term cloud cover changes.  Trial and error methodology was used 
thereafter to adjust the input variables. We tried several different input scenarios.  In 
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some cases, input data which would have a significant impact on an operational 
forecaster’s cloud cover prediction did not necessarily have the desired effect on the 
neural network.  For example, when initial cloud cover was used as an input to the model, 
the neural network learned that if the initial cloud cover is zero, then the only possible 
change is to increase.  Conversely, it learned that if the initial cloud cover is a ceiling, 
then the only possible change is to decrease.  Though the neural network model had a 
near 100 percent probability of detection for large cloud cover changes when the initial 
cloud cover was included in the input, its false alarm rate was also extremely high. 

After attempting several input scenarios, we developed a model which exhibited 
some limited success.  The following items were used as inputs to the artificial neural 
network: 

• Dew point depression, 
• Wind direction, 
• Change in dew point depression over last three hours, 
• Change in temperature over last three hours, 
• Time of day, 
• Season, 
• Change in cloud cover over last hour, and 
• Change in cloud cover over last two hours. 

Each of the above variables was scaled to the interval [-1,1].  Two different artificial 
networks were generated, one trained and tested with data spanning the entire year and 
another trained and tested with summer time (May - September) data only. 

Section 3 presents a detailed analysis of these networks’ performance.  Briefly, the 
models were generally able to differentiate between significant cloud cover increases and 
decreases, but they did not do well predicting the magnitude of this change.  As will be 
shown in Section 3, neither model performed as well as persistence.  This was probably 
due to the common practice in training neural networks of using uniform distributions in 
the training data.  In this case, the change in cloud cover was uniformly distributed in the 
training data.  This forced the networks to learn changes rather than allowing them to 
reduce their RMS errors by responding with a  zero change in cloud cover all of the time 
which is the most frequent observed result. 

Rather than exert more effort performing a detailed analysis of the surface 
observations in an attempt to improve the networks’ performance, we felt it would be 
more beneficial to include the upper air data as input to the network.  In addition to the 
surface observations listed previously, the following new data elements were scaled to 
the interval [-1,1] and input to the neural network: 

• Wind directions at 850, 700, and 500 millibars, 
• Relative humidities at 850 and 700 millibars, 
• Change in wind direction between 800 and 700 millibars, 
• Change in wind direction between 700 and 500 millibars, and 
• Change in temperature between 800 and 500 millibars 

 7  
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Addition of the upper air data did not have the desired effect.  The temporal 
resolution of the rawinsondes was much less than that of the surface observations.  
Within the training set, the cloud cover would change dramatically in both directions 
while the measured upper air data did not change at all (a consequence of the poor 
temporal resolution of the upper air data). This resulted in the neural network tending to 
output a zero change in cloud cover all the time. 

The upper air data were incorporated into the network towards the end of the project 
and time constraints did not allow us to further adjust the upper air representations in the 
neural network model.  More innovative approaches to incorporating the data (i.e. 
applying the upper air data only at observation time and using 0’s other times or using 
upper air data output by a mesoscale model output as input) may significantly improve 
the network’s performance.  Since the upper air data were not fully exploited in the 
neural network model, only the performance of the surface observation only neural 
network model was assessed. 
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3.0 Analysis of ANN Results 

As described above, the artificial neural networks had trouble predicting the 
magnitude of the change in cloud cover.  Table 3.1 shows the actual number of correct 
responses generated by the neural network for the two hour cloud cover forecast 
compared to persistence.  Any neural network output within one tenth of the desired 
response was considered correct and any change less than or equal to one tenth in the 
observed data was considered to be characterized by persistence. 

As is evidenced by the data in Table 3.1, the neural network did not perform as well 
as persistence.  The data set used to train the neural network contained a uniform 
distribution of changes in cloud cover.  That is, the number of records where the 
observed change in cloud cover was one tenth was the same as the number of records 
where the change was observed to be zero tenths, two tenths, and etc.  This forced the 
network to learn changes.  Had the neural network been trained with data actually 
representing the true distribution of the observed two hour cloud cover change, it may 
have been able to match persistence without really learning anything about the indicators 
of actual cloud cover change. 

 

Table 3.1. ANN Output VS Persistence Over 2 Hours (Entire Year) 

Initial Cloud Cover # of Samples % Correct by 
Persistence 

% Correct Output 
by ANN 

0 4701 87 78 

1 3869 84 67 

2 2910 74 55 

3 2244 66 46 

4 1288 51 45 

5 631 32 44 

6+ 3719 70 60 

Total 19362 75 62 

The artificial neural network was more successful in correctly identifying whether the 
cloud cover increased or decreased over two hours than it was in predicting the actual 
cloud cover.  It did not, however, handle situations where the observed change in cloud 
cover was one tenth or less in either direction.  In those cases, the neural network’s 
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responses centered about 0, but were not reliable in direction and often indicated large 
increases or decreases in cloud cover when none were reported.  Table 3.2 provides the 
probabilities the neural networks would detect an increase or decrease in the amount of 
cloud cover.  The percentages provided in Table 3.2 are defined as follows: 

PODP: The probability the neural network would predict an increase in cloud 
cover greater than or equal to delta when the observed increase is greater 
than delta.  (If delta equals 0, then assume delta = 1/10.) 

FARP: The probability the neural network would predict an increase in cloud 
cover when the observed change in cloud cover was a decrease of delta 
or more.  (In this case, do not assume delta = 1/10 if delta equals 0.) 

PODM: The probability the neural network would predict a decrease in cloud 
cover greater than or equal to delta when the observed decrease is 
greater than delta.  (If delta equals 0, then assume delta = 1/10.) 

FARM: The probability the neural network would predict a decrease in cloud 
cover when the observed change in cloud cover was an increase of delta 
or more.  (In this case, do not assume delta = 1/10 if delta equals 0.) 

 

Table 3.2. Ability of ANN to Distinguish Between Increases and Decreases in 
Cloud Cover Over 2 Hours (Entire Year) 

Delta  PODP (%) FARP (%) PODM (%) FARM (%) 

0 62 78 32 65 

1/10 62 34 32 23 

2/10 63 22 44 23 

Operational forecasters adhere to different sets of rules depending upon the time of 
year in order to accommodate seasonal effects in their analysis of the weather conditions 
and forecasting.  Artificial neural networks tend to generalize and in doing so average 
seasonal effects over the entire year.  To see how much this affected the results, we 
retrained the artificial neural network with daytime summer data only.  Summer, in this 
case, consisted of the months May through September. 

Table 3.3 compares the performance of the summer time only network to persistence.  
As with the artificial neural network for the entire year, the training data set consisted of 
a uniform distribution of cloud cover change rather than a distribution dominated by 
persistence.  For the most part, Table 3.3 does not indicate a significant improvement in 
performance. 
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Table 3.3. ANN Output VS Persistence Over 2 Hours (Summer Only) 

Initial Cloud Cover 
(Tenths) 

# of Samples % Correct by 
Persistence 

% Correct Output 
by ANN 

0 1826 86 80 

1 1914 85 71 

2 1586 80 59 

3 1176 72 49 

4 587 57 55 

5 217 37 49 

6+ 647 54 49 

Total 7953 75 62 

Table 3.4, however, does suggest the summer only artificial neural network 
performed a little better than the entire year artificial neural network.  This is especially 
evidenced by the reduction in the False Alarm Rates.  

 

Table 3.4. Ability of ANN to Distinguish Between Increases and Decreases in 
Cloud Cover Over 2 Hours (Summer Only) 

Delta PODP (%) FARP (%) PODM (%) FARM (%) 

0 62 62 40 42 

1/10 62 32 40 18 

2/10 63 19 56 16 
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4.0 Conclusions 

We underestimated the effort necessary to develop an operational neural network 
prototype.  The surface observations alone did not provide easily detectable patterns for 
the neural network model to recognize and associate with near-term cloud cover changes 
and the neural network model did not perform as well as expected.   The temporal 
resolution of the upper air data prevented it from being exploited by the neural network 
model within the allotted time schedule.  Due to the greater priority of our other tasks, we 
did not pursue the work further as it was unclear how much effort would be required to 
improve the model’s performance to the level where it would be a useful forecast tool. 

Despite the failure to develop an operational prototype within the given time 
schedule, this project did demonstrate that neural networks may have potential as 
forecasting tools.  Even when provided the limited data already available within the 
AMU, the neural network did exhibit some ability to learn.  The following paragraphs 
identify some of the “lessons learned” and suggest some possible directions for 
continuation of the project should the resources become available. 

First, data more predictive of cloud cover changes should be incorporated into the 
neural network. More innovative approaches could make it feasible to include the upper 
air data in the network training.  Instead of using the same upper air data throughout the 
entire day (i.e. when there is only one sounding per day), forecast values from mesoscale 
models could be used when the latest sounding is no longer representative of the 
atmosphere.   Also, more spatial data could be incorporated into the network.  The neural 
network was not provided any information regarding cloud cover which may be 
advecting towards the SLF. 

Also, developing different neural networks for the different times of the year should 
improve performance.  (The summer only neural network performed slightly better than 
the neural network trained with data from the entire year.)  Forecasters use entirely 
different sets of rules based on the time of year.  In their tendency to generalize, neural 
networks average the seasonal effects over the entire year.  Developing different neural 
networks for the different seasons would better allow the networks to develop their own 
sets of rules for the different seasons.  The same principle applies to diurnal effects, and 
different neural network models for different times of the day may also be beneficial. 

Finally, closer inspection of the training data, especially when only surface 
observations are used, may improve performance.  The training data records were 
selected at random for this project.  In some cases, surface observations which would 
normally indicate a decrease in clouds may result in an increase due to a feature not 
contained in the surface conditions.  This confuses the network during training since two 
data records containing nearly the same input data items have entirely different desired 
results. Just a few of these anomalous records can inhibit the network’s ability to learn 
the standard forecasting rules.   
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If the anomalous cases are removed from the training set, the network would still 
perform poorly for the anomalous cases, but its ability to learn the standard rules would 
be significantly improved.  Removing anomalous cases is both labor intensive and risky 
since it would be easy to remove data records containing important information for the 
network.  If the training data contain anomalous data records, it is best to add additional 
input elements that can differentiate between the apparent inconsistencies.  If the 
necessary input elements are unavailable, then removing the anomalous data records may 
be necessary.  Careful inspection of data along with documentation of the features the 
network does not handle well should be included as part of the input data editing process. 

Artificial neural networks are similar to other models in that they can perform only as 
well as their input data allow.  Surface observations are not customarily considered the 
only indicators of cloud cover changes and should not be the only input to a neural 
network attempting to provide operational cloud cover forecasts. As a short term 
experiment, however, the surface data allowed us to evaluate the feasibility of developing 
artificial neural network forecasting aids.  Though artificial neural networks may prove 
useful in short-term cloud cover forecasting, the development of operational forecast 
tools requires significantly more resources than the AMU had allocated for this effort. 
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