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Executive Summary 

Forecasters at the Spaceflight Meteorology Group, 45th Weather Squadron, and National Weather Service in 
Melbourne, FL use mesoscale numerical weather prediction model output in creating their operational forecasts. 
These models aid in forecasting weather phenomena that could compromise the safety of launch, landing, and daily 
ground operations and must produce reasonable weather forecasts in order for their output to be useful in operations. 
Considering the importance of model forecasts to operations, their accuracy in forecasting critical weather 
phenomena must be verified to determine their usefulness. The currently-used traditional verification techniques 
involve an objective point-by-point comparison of model output and observations valid at the same time and 
location. The resulting statistics can unfairly penalize high-resolution models that make realistic forecasts of a 
certain phenomena, but are offset from the observations in small time and/or space increments. Manual subjective 
verification can provide a more valid representation of model performance, but is time-consuming and prone to 
personal biases. An objective technique that verifies specific meteorological phenomena, much in the way a human 
would in a subjective evaluation, would likely produce a more realistic assessment of model performance. 

Such techniques are being developed in the research community. The Applied Meteorology Unit (AMU) was 
tasked to conduct a literature search to identify phenomenological verification techniques being developed, 
determine if any are ready to use operationally, and outline the steps needed to implement any operationally-ready 
techniques into the Advanced Weather Information Processing System (AWIPS). 

The AMU conducted a search of all literature on the topic of phenomenological-based mesoscale model 
verification techniques and found 10 different techniques in various stages of development. Six of the techniques 
were developed to verify precipitation forecasts, one to verify sea breeze forecasts, and three were capable of 
verifying several phenomena. The AMU also determined the feasibility of transitioning each technique into 
operations and rated the operational capability of each technique on a subjective 1–10 scale: 

• 1 indicates that the technique is only in the initial stages of development, 
• 2–5 indicates that the technique is still undergoing modifications and is not ready for operations, 
• 6–8 indicates a higher probability of integrating the technique into AWIPS with code modifications, and 
• 9–10 indicates that the technique was created for AWIPS and is ready for implementation. 

Eight of the techniques were assigned a rating of 5 or below. The other two received ratings of 6 and 7, and none of 
the techniques a rating of 9–10. 

At the current time, there are no phenomenological model verification techniques ready for operational use. 
However, several of the techniques described in this report may become viable techniques in the future and should 
be monitored for updates in the literature. The desire to use a phenomenological verification technique is widespread 
in the modeling community, and it is likely that other techniques besides those described herein are being developed, 
but the work has not yet been published. Therefore, the AMU recommends that the literature continue to be 
monitored for updates to the techniques described in this report and for new techniques being developed whose 
results have not yet been published. 
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1. Introduction 

Forecasters at the Spaceflight Meteorology Group (SMG), 45th Weather Squadron (45 WS), and National 
Weather Service in Melbourne, FL (NWS MLB) use numerical weather prediction (NWP) model output on a daily 
basis in creating their operational forecasts. Models such as the Rapid Update Cycle (RUC), North American 
Mesoscale (NAM, formerly Eta) model, Global Forecast System (GFS), and the Advanced Regional Prediction 
System (ARPS) aid in forecasting weather phenomena that could compromise the safety of launch, landing, and 
daily ground operations. Such phenomena include low- and upper-level winds, cloud cover, timing and strength of 
the sea breeze, convection, and precipitation. Although no model can produce a flawless forecast of these 
phenomena, it must produce a reasonable depiction of the future state of the weather in order for its output to be 
useful for operational forecasting. Considering the importance of model forecasts to operations, their accuracy in 
forecasting critical weather phenomena must be verified properly to determine their actual usefulness. 

The quality of a model forecast can be assessed through several verification methods. Given the large amount of 
model and observational data required to produce meaningful verification results, automated objective techniques 
are needed. However, it is well known in the modeling community that traditional objective techniques often fall 
short of providing an accurate depiction of model performance in forecasting mesoscale and convective-scale 
phenomena. Traditional techniques involve a point-by-point comparison of model output and observations valid at 
the same time and location. The resulting statistics can unfairly penalize high-resolution models that make realistic 
forecasts of certain phenomena that are offset from the observations in small time and/or space increments. Manual 
subjective verification can provide a more valid representation of model performance; however, subjective 
techniques are costly, time-consuming, and prone to personal biases. An objective technique that verifies specific 
meteorological phenomena, much in the way a human would in a subjective evaluation, is often needed to produce a 
more realistic assessment of model performance for a given application. Such techniques are being developed in the 
research community. 

The Applied Meteorology Unit (AMU) was tasked to conduct a literature search to identify the 
phenomenological verification techniques being developed, assess if any are ready to use operationally, and 
determine the steps needed to implement any operationally-ready techniques into the Advanced Weather 
Information Processing System (AWIPS). In all, 10 candidate verification techniques were found through a 
literature search. For each technique, the AMU identified the meteorological phenomenon or phenomena that each 
technique was developed to verify, determined the method used to verify the phenomena, and assessed the 
operational readiness for incorporation into AWIPS. The report is organized as follows. Section 2 provides a survey 
of all the literature containing information about phenomenological-based (aka event- or object-based) verification 
techniques. The feasibility of implementing each technique into operations in AWIPS is given in Section 3, and a 
summary is provided in Section 4. 
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2. Relevant Literature 

The AMU conducted a search for literature on the topic of phenomenological-based verification techniques. A 
total of 21 journal articles, preprints, presentations, and web sites were identified that described an event-based 
verification technique or the need to develop one. Of those, 13 described an actual technique that had been or was 
about to be developed. A few of the articles described the same technique used in different studies. In all, 10 unique 
techniques were identified in the literature. Tables were created that contain detailed summaries about the articles, 
which are in Appendices A–C. 

The descriptions of the techniques were organized by the type of phenomenon being verified. There were three 
phenomenon categories:  

• Precipitation, 
• Sea Breeze, and 
• Multiple Phenomena. 

Considering the goal of the task, the AMU also determined the stage of development for each technique to 
determine its level of readiness for operations and implementation in AWIPS. This determination was strictly 
subjective and based on several factors: 

• Whether an actual routine was developed or if it was just proposed as a possible routine, 
• If a developed routine was an initial version that needed further testing, 
• How many cases were used to test the routine and if it had been used in multiple studies as a valid 

verification method, and 
• Whether it was developed for real-time operations or AWIPS. 

Within each phenomenon category in this section, the techniques are listed in order of increasing operational-
readiness. 

2.1. Precipitation 

Six of the ten techniques were developed to verify model forecasts of precipitation only. A brief summary of 
each technique is given below, with more detailed summaries provided in Appendix A. 

2.1.1. Automated Rainfall System Classification 

The work in Baldwin et al. (2005, Table A.1) focused on identifying characteristics of precipitation areas to be 
used in developing an automated rainfall system classification. Such a classification was expected to be helpful for 
future use in an object-based verification tool. The classification was to discern between stratiform and convective 
precipitation, with convective precipitation subdivided into linear and cellular types. 

The authors conducted a statistical analysis of observed hourly rainfall rates and rain-area shapes using a 
training data set of 48 cases to determine features important to each classification. These statistical attributes were 
used to determine the classification of rainfall areas in a testing data set of 100 cases. The procedure was able to 
distinguish between stratiform and convective systems in 89% of the cases, and between stratiform, linear 
convective, and cellular convective in 85% of the cases. The conclusions state, however, that further work needs to 
be done to refine the procedure by using more cases in the training data set. This may reveal other features important 
in classifying rainfall systems. 

This is a rainfall system classification procedure and not a verification method. The authors state that it is a 
precursor to a verification method. The procedure needs more refinement and is not ready for operational 
classification of rainfall systems. 
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2.1.2. Storm-Scale Statistical Measures 

The goal of Zepeda-Arce et al. (2000, Table A.2) was to create a verification technique that would help model 
developers determine deficiencies in microphysical parameterization schemes by analyzing the quality of the model 
precipitation forecasts. The technique consists of four algorithms that provide different statistical measures of model 
performance in predictions of storm-scale precipitation. The first algorithm calculates a threat score (TS) as 

TS = Ac/(Ao + Af – Ac), 

where Ac is the size of the correctly forecast area of rainfall bounded by a defined threshold amount, Ao is the 
observed area, and Af is the forecast area. This shows the ability of the model to predict the area size of precipitation 
that has amounts exceeding a given threshold. The second is a depth-area-duration curve, in which rainfall depth 
(accumulated amount) versus the size of the area over which that depth is exceeded is plotted for a fixed time 
duration. This measure shows the areal variance in precipitation amount for the forecasts and observations of 
precipitation individually. The third algorithm is based on results from previous studies that showed a constant 
increase in rainfall variance with spatial scale on a logarithmic scale. This method was used to determine if the 
observed and forecast precipitation exhibited similar characteristics. The fourth algorithm expanded on the third by 
determining the variance in rainfall intensity over different space and time scales. 

These routines were developed for post-analysis of model forecasts to help model developers determine the 
strengths and weaknesses of the model microphysical parameterizations. The mathematics are complicated and it is 
not clear how the output could be useful in operations. It would require considerable effort to transform the routines 
and create output useful to operations. 

2.1.3. Intensity/Spatial Scale Verification 

An intensity-scale verification technique for precipitation forecasts was described in Casati et al. (2004, Table 
A.3). The goal of the technique was to allow the user to assess the skill of the forecast in terms of precipitation rate 
and spatial scale errors. The observed and forecast precipitation data were pre-processed in several steps before the 
verification took place. A small amount of uniformly distributed noise was added to non-zero precipitation values in 
the analysis and forecast fields. This helped compensate for the effects caused by digitizing the archived data values. 
The new precipitation rate values were normalized in a logarithmic (base 2) transformation. This reduced the 
skewness of the rainfall rate distribution due to the large amount of small values, producing more normally 
distributed values. Finally, the forecasts were re-calibrated by substituting each value in the forecast image with the 
value in the analysis image having the same cumulative probability, which is the probability that the precipitation 
rate will be a certain value or less. 

The forecast and analysis were converted to binary images based on rainfall rate threshold: a “1” for values 
greater than and a “0” for values less than the threshold. A binary error image was created by subtracting the 
analysis binary image from the forecast binary image, and errors on different spatial scales were determined through 
a wavelet decomposition analysis. The error values from the wavelet analysis were used in calculations of mean 
square error (MSE) and skill score (SS), which revealed model performance in both spatial and intensity scales. 

The authors believe that phenomena other than precipitation can be verified with this technique. It is a new 
technique and needs more testing to determine its viability and usefulness in verifying phenomena other than 
precipitation. 

2.1.4. Acuity-Fidelity 

Marshall et al. (2004) describes a method in which the two metrics of acuity and fidelity were used to verify 
model precipitation forecasts (Table A.4). Acuity was calculated by finding the best matching forecast for every 
observation, and fidelity by finding the best matching observation for the forecast. The best match was not 
necessarily the object that was closest in time or space. Acuity and fidelity were calculated separately by minimizing 
a cost function with four components: spatial difference, temporal difference, intensity difference, and missed 
events. The authors conducted sensitivity studies to determine the best value for these parameters, and then used 
these values in verifying the performance of the models. 

This is another proof-of-concept approach that is still being tested. The cost function component multipliers are 
configurable, but sensitivity tests would have to be conducted to determine their appropriate magnitudes based on 
the model, verification data, and phenomenon of interest. 
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2.1.5. Convolved Object Matching 

Bullock et al. (2004) and Chapman et al. (2004) both describe a convolved-object-matching process for use in 
evaluating quantitative precipitation forecasts. The basic concept was described in Bullock et al. (2004, Table A.5) 
and examples using real data were provided in Chapman et al. (2004, Table A.6). In this method, both the forecast 
and observed fields of precipitation were resolved into objects to be compared. The objects were created by applying 
a filter to the raw data, called a convolving function. The convolving function attenuated the large gradients in the 
data while maintaining the small gradients. The convolved data were then filtered by a threshold value found in the 
precipitation field. A ‘mask’ field was created by setting all values above the threshold to 1 and all values below to 
0, resulting in a field of object shapes. A new grid was created in which the original data values were restored where 
the mask field was 1, and set to 0 where the mask field was 0. Shape attributes (e.g. centroid and axes) of each of the 
objects were calculated, and shapes (e.g. band aids and ellipses) were fit to the objects. The closer the forecast object 
attributes matched the observed object attributes, the better the forecast was said to be. Forecast quality could be 
summarized by statistics of object attribute differences. 

Two different tests were conducted in Chapman et al. (2004). In the first, the authors determined a threshold 
number of grid points between two or more objects below which the objects were merged into one and above which 
the objects were deemed separate. This required a human subjective analysis, but the results indicated that an 
automated matching technique might be useful in some cases. In the second test, data from two other cases were 
used to illustrate the utility of looking at smaller scale objects to help match larger scale objects. It was possible to 
consider two areas related if their small and large scale features were similar. 

This technique was able to detect distinct objects and match forecast objects to observed objects. However, 
more sophisticated merging and object matching routines were needed for complex cases as described in Bullock et 
al. (2004). This technique needs further refining before it can be used in operations with confidence. 

2.1.6. Contiguous Rain Area 

The technique described in Ebert and McBride (2000, Table A.7) was derived from that of Hoffman et al. 
(1995; Section 2.3.3, Table C.3) in which the entire forecast object is translated as one entity. A Contiguous Rain 
Area (CRA) was defined as the union of the observed and forecast precipitation areas that exceeded a user-specified 
rainfall amount. In keeping with the ideas of Hoffman et al. (1995), the technique was tested with forecasts from a 
larger (regional) scale model. The forecast precipitation area was shifted incrementally by grid points over the 
observed area until the total MSE between the forecast and observations was minimized. The errors due to 
displacement, rain amount, and rain pattern were then calculated. The authors also conducted tests to determine how 
many grid points within a rain system were needed to obtain realistic verification results when an observed or 
modeled precipitation area was cut off by an observational (e.g. coastline) or model boundary. For their parameter 
settings, they found at least 20 grid points were needed within these rain areas. 

The CRA technique was used by Grams et al. (2004) to determine how well mesoscale models predicted 
precipitation systems based on their morphology (Table A.8). They used the CRA method but modified it to account 
for the higher spatial resolution of the models and the shorter time period over which precipitation accumulated. The 
authors further defined different morphology types in linear and non-linear groups, and were able to create CRAs 
based on these criteria. 

This technique appears to be ready to use in a post-analysis mode, although the user must determine appropriate 
parameter settings through testing. The technique’s parameters can be changed to accommodate any time and space 
resolution as evidenced in Grams et al. (2004, Table A.8). However, it may take considerable effort to incorporate 
this technique into AWIPS. 
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2.2. Sea Breeze 

The Contour Error Map (CEM) technique was described in Case et al. (2004, Table B.1), and is the one 
technique in this study that verifies sea breeze forecasts exclusively. In this method, data from observations and the 
model were interpolated to the same grid, and then a binary threshold was applied to distinguish between onshore 
(easterly) and offshore (westerly) flow. A time estimation filter was applied to the sine of the wind direction to 
determine the timing of transition from offshore to onshore winds at each of the grid points. The transition times at 
each grid point were displayed in a 2-D plot. A negative time gradient in the east–west direction indicated a west-to-
east progression of a boundary. This was assumed to be the result of a non-sea breeze phenomena such as a river 
breeze or convective outflow boundary and was eliminated from the analysis in a process called image erosion. The 
verification statistics included determining the  

• Fractional area of the grid with only observed sea breeze transition times, 
• Fractional area of grid with only forecast sea breeze transition times, and 
• Average and standard deviation of the sea breeze transition time errors at grid points that experienced 

both observed and forecast sea breeze transition. 

This technique was developed as a post-process, proof-of-concept technique. The technique is tuned to detect 
sea breezes in the Kennedy Space Center (KSC)/Cape Canaveral Air Force Station (CCAFS) area using high 
temporal and spatial resolution data. It was not tested on other phenomena. The authors believe this technique could 
be more fully automated and transitioned into AWIPS for real-time operations with moderate effort. 

2.3. Multiple Phenomena 

There were three techniques designed to verify multiple phenomena, including rain and wind. Summaries 
containing more details of these studies are provided in Appendix C. 

2.3.1. Mesoscale Verification Tool 

The Mesoscale Verification Tool (MVT) along with an associated Mesoscale Data Manipulator (MDP) were in 
the beginning stages of development at the University of Washington as described by Sandgathe and Heiss (2004, 
Table C.1). The authors stated that a verification tool should be automated and flexible; adaptable to issues 
concerning forecast parameters, timing, and intensity; capable of evaluating distortion, timing, and amplitude errors; 
able to address large numbers of cases and multiple models rapidly; be statistically sound; and present results that 
are easy to interpret. 

The MVT separated the forecast error into amplitude and timing components using the procedure defined by 
Hoffman et al. (1995, Section 2.3.3, Table C.3), which uses a search technique to find a forecast object that is 
similar to an observed object on a grid. The authors found that the full grid point-by-grid point search was too slow 
to be operationally feasible, so they employed accelerated search techniques based on image matching algorithms 
used by the motion picture industry. The main focus of the paper was a web-based graphical user interface (GUI) 
developed to display graphical representations of the model output, and how to use the MDP in selecting dates, 
initialization times, model domain, verifying field and forecast hour, and other items. 

An email conversation with the author indicated that the verification techniques are still being developed and 
tested and the system is not ready for use. It may be quite some time before the technique is developed and working. 
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2.3.2. Composite Verification 

Nachamkin (2004, hereafter N1) and Nachamkin et. al. (2004, hereafter N2) both discuss the same verification 
technique tested on two different phenomena: mistral wind (N1) and heavy precipitation (N2) events (both in Table 
C.2). The mistral is a strong northerly wind event that occurs over the northern Mediterranean Sea and the heavy 
precipitation events were those of 25 mm or more over the contiguous United States. Each event occurred over a 
defined spatial area. 

Once identified, the forecast and observed events were translated to separate relative grids, one for the forecast 
and one for the observations, with the center of each event-object positioned at the center point of the grids. The 
relative grids had spacing equal to that of the model data. The observed objects associated with the forecast objects 
were superimposed on the forecast relative grid in the same relative location as on the regular grid, and vice versa. 
In the forecast relative grid, the observations were conditional on the existence of a forecast event, and in the 
observation relative grid, the forecasts were conditional on the existence of an observed event. The two grids in this 
method allow two general questions to be answered: What was observed if an event was forecast and what was 
forecast when an event was observed? Many events were composited together to determine the general statistical 
properties of the observed and forecast events separately and in relation to each other. Statistics were calculated and 
displayed to demonstrate the magnitude and location differences between the forecasts and observations in each 
conditional grid. 

This method requires an archive of events to get overall results of how well a model predicts the attributes of a 
specific phenomenon, and was not developed for real-time verification. It would be more useful for a climatological 
verification. The mechanics of the method, which involves moving both forecast and observations to a relative grid, 
are more cumbersome than complicated. 

2.3.3. Object Distortion 

This technique was introduced in Hoffman et al. (1995, Table C.3) and was developed for verification of 
phenomena on the synoptic scale, not the mesoscale. The distortion of an object was defined as the combination of a 
spatial displacement error and an amplitude error. Any error not accounted for by the distortion was deemed residual 
error. The displacement was defined to be a smooth transformation of a field without modification to the magnitude 
of the data. The transformation could include translation, stretching, and rotation of the object through movement of 
the individual grid points within an object. Limits were imposed on how far from the original grid point the 
displaced data could be moved. The values of the data were then multiplied by an amplification factor to fit the 
observed field as closely as possible. The displacement and amplification took place until the root mean square 
(RMS) error was minimized. 

The authors discussed another method in which the entire forecast field was displaced and amplified as one 
object to match as closely as possible the location of the observed object. No distortion to the shape of the object 
took place. Then, all the data values were multiplied by one amplitude factor that minimized the error. As in the 
previous method, the displacement and amplitude factors were chosen such that the total RMS error in the analysis 
area was minimized. 

This technique was developed as a prototype to verify forecasts of synoptic-scale phenomena. It still needs 
testing and development to determine appropriate parameter settings, but it performed well on the cases presented in 
the paper. Several articles referencing this technique have been published, most notably Ebert and McBride (2000, 
Table A.7). It appears to be a seminal paper on the topic of model object-based verification techniques. 
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3. Operational Readiness 

The AMU determined the feasibility of transitioning each technique identified in this report into operations by 
whether it could 

• Be automated for real time, 
• Provide graphical displays of the verification information, and 
• Be integrated into AWIPS. 

3.1. Technique Ratings 

The AMU rated the operational capability of each technique on a 1–10 scale. A “1” indicates that the technique 
is only in the initial stages of development and needs much more testing and modification. A “2”–“5” indicates that 
the technique is still undergoing modifications and is not ready for transition into operations, but future literature on 
the technique should be monitored. A “6”–“8” indicates a higher probability of integrating the technique in AWIPS 
with moderate to significant modifications to the code. A “9”–“10” would indicate that the technique was created for 
AWIPS and that it is ready or almost ready for implementation. The ratings for each technique are shown in Table 1. 

Table 1. A list of all the techniques discussed in this report, their operational readiness 
ratings on a scale from 1–10, and references to their description locations in the report. These 
techniques should be monitored for further testing and development. 

Technique Rating Reference Location in Report 

Precipitation 
Automated Rainfall System Classification 1 Section 2.1.1, Table A.1 
Storm-Scale Statistical Measures 2 Section 2.1.2, Table A.2 
Intensity/Spatial Scale Verification 3 Section 2.1.3, Table A.3 
Acuity-Fidelity 3 Section 2.1.4, Table A.4 
Convolved Object Matching 4 Section 2.1.5, Tables A.5 and A.6 
Contiguous Rain Area 6 Section 2.1.6, Tables A.7 and A.8 

Sea Breeze 
Contour Error Map 7 Section 2.2, Table B.1 

Multiple Phenomena 
Mesoscale Verification Tool 2 Section 2.3.1, Table C.1 
Composite Verification 3 Section 2.3.2, Table C.2 
Object Distortion  5 Section 2.3.3, Table C.3 
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3.2. Integration into AWIPS  

Although none of the techniques were ready for transition into real-time operations in AWIPS, it would still be 
helpful for future reference to outline the steps needed for AWIPS implementation. The procedure discussed in the 
following two paragraphs provides only a general idea of the steps to be taken in AWIPS-implementation of a 
technique. The ability to make the techniques available in AWIPS is dependent on AMU and AMU customer 
expertise in modifying AWIPS, and the state of AWIPS when a technique is finally ready for operations. If and 
when a phenomenological verification technique has been determined to be ready for operational use, the idea of 
making the technique available in AWIPS must be revisited and the exact steps to do so determined at that time. 

The first step would be to ensure that the code for the technique is written in a programming language 
compatible with AWIPS. At this time, those languages include C, Python, Perl, and C++, FORTRAN, Java, Tcl/Tk, 
and Motif. If the code is not written in any of these languages, it would have to be translated into one of them. 
Beyond that, the technique must be able to process the mesoscale model forecast data available in AWIPS at the 
time and space resolution of that data. Observational data used to verify model performance must be analyzed to a 
grid prior to being used in the technique, preferably to a grid size similar to that of the model data. This can be done 
using a tool such as the ARPS Data Analysis System (ADAS), already in use at SMG and NWS MLB. Another 
possible source for gridded observational data is the Real-Time Mesoscale Analysis (RTMA) to be developed in the 
near future by NOAA’s Environmental Modeling Center. This will be an hourly analysis of surface observations on 
a 5 X 5 km grid over the Continental U.S. (CONUS). There are certain parameter values that must be tuned in 
several of the techniques described in this report. Some of the studies conducted tests with model and observational 
data to determine the optimal values for these parameters, which can depend on the phenomenon being verified, 
time of year or day, the model space and time resolution, and other issues. Depending on the technique, this type of 
testing may have to be done to determine the parameter settings prior to automated implementation of the technique. 

Once the code language, model and observational data, and parameter setting issues have been ironed out, there 
should be a way for users to run the technique automatically with minimal user input. The localization capabilities in 
AWIPS can be used to create menu items in which the user can define the model and observational data sets to use 
in the verification. The user could also choose a verification technique to use if two or more are made available. 
AWIPS can also accommodate graphical and textual output of the verification results. 
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4. Summary and Recommendations 

This report provided summaries of articles that describe phenomenological model verification techniques, and 
discussed the feasibility of using any of the techniques operationally. Forecasters at SMG, 45 WS, and NWS MLB 
all use model output for guidance in their daily forecast operations. Considering the importance of model data to 
these forecasts, the accuracy of models in forecasting critical weather phenomena must be verified to determine their 
actual usefulness. The most common verification techniques involve a point-by-point comparison of model output 
and observations valid at the same time and location. These techniques are believed to unfairly penalize high-
resolution models that make realistic forecasts of phenomena, but may be offset from the observations in small time 
and/or space increments. The consensus opinion from the mesoscale modeling community is that a verification 
technique created specifically to identify phenomena, or objects, in the model and observed data is likely to provide 
a more accurate portrayal of model performance. 

All of the articles summarized in this report, save one, were published on or after the year 2000, indicating the 
relative newness of this technology. However, mentions on the need for such technology have appeared in papers 
dating back into the 1970’s. This also speaks to the inherent difficulty in creating automated, objective algorithms 
that can make decisions similar to that of humans. Phenomenological model verification is an inherently complex 
seven-dimensional problem (Mr. William Roeder, 45 WS, Personal Communication): 

1) Occurrence (yes/no); 
2) x-, 
3) y-, and 
4) z-location; 
5) Timing; 
6) Areal coverage; and 
7) Intensity. 

There can be some ambiguity for each dimension, and each dimension can have several metrics to fully describe the 
errors. In the articles found for this report, all of these dimensions are accounted for in different ways, but no 
technique accounted for all seven dimensions at once. 

4.1. Summary of Techniques 

The AMU identified 10 different event-based verification techniques through a literature search. Of the 10 
techniques, 

• Six were created to verify precipitation events, although 2 of the 6 stated that their technique could be 
used for other phenomena, 

• One was created to verify sea breeze events, and 
• Three were created for any phenomena that could be defined over a specific geographical area (e.g. 

pressure fields, localized wind events, etc.). 
All of the techniques were still undergoing some level of development and testing at the time the work was 
published. Eight of the techniques received a subjective rating of 5 or below in Table 1, indicating that these 
techniques are still undergoing modifications and are not ready for transition into operations, but future literature 
describing them should be monitored. The other two received ratings of 6 and 7, signifying that they have a higher 
probability of being integrated into AWIPS with some level of modifications to the code. None of the techniques 
were developed specifically for real-time use in AWIPS. 

The AMU consulted with Ms. Jennifer Mahoney of the NOAA Global Systems Division (formerly Forecast 
Systems Laboratory), a well-known expert in the field of model verification. Ms. Mahoney stated that, while there is 
much research being conducted in this area, no one phenomenological verification technique has proven robust or 
reliable enough to verify operational or archived model data with confidence. Many issues still remain, such as how 
to identify a specific phenomenon or event objectively, what parameters should be used, and what threshold values 
are appropriate. Ms. Mahoney estimated that such a reliable technique may be available in 5–10 years given the 
current rate of advancements in the research. She also stated that the CRA technique described in Ebert and McBride 
(2000) is gaining favor among several groups (Section 2.1.6, Table A.7). 
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4.2. Recommendations 

At the current time, there are no phenomenological model verification techniques ready for operational use 
either for AWIPS or any other platform and, therefore, none can be transitioned for operational use in the short-term. 
Several of the techniques described here may become robust and reliable techniques in the future and should be 
monitored for updates in the literature. The desire to develop a phenomenological verification technique is 
widespread in the modeling community, and it is likely that other techniques besides those described herein are 
being developed but the work has not yet been published. Based on the findings in this report, the following actions 
are recommended: 

• Monitor the progress of all techniques that received a rating of 2 or higher in Table 1, 
• Monitor conference preprints and journal articles for new techniques that show promise, 
• Closely monitor studies that use the CRA technique since it is considered one of the better techniques 

by the model verification community, and 
• Determine the amount of work needed to transition the CEM technique into AWIPS. Even though it 

only verifies sea breeze transitions, the sea breeze is a critical weather generator in the KSC/CCAFS 
area. 
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Appendix A 

Table A.1. Detailed summary of Baldwin et al. (2005), discussed in Section 2.1.1. 

Reference Baldwin, M. E., J. S. Kain, and S. Lakshmivarahan, 2005: Development of an automated 
classification procedure for rainfall systems. Mon. Wea. Rev., 133, 844-862. 

Weather 
Element Rain Systems 

Model None, developed for future use in model verification and other applications. 

Data National Centers for Environmental Prediction (NCEP) Stage IV rainfall analysis (national 
1-hour rainfall estimates using radar and rain gauge data on a 4 X 4 km grid) 

Time Period 2002 

Name of 
Technique Automated Rainfall System Classification 

Description 

The goal of this work was to develop an automated rainfall system classification for future 
use in a possible model phenomenological verification tool and to develop climatologies. 
The classification was to discern between convective and stratiform precipitation, and 
subdivided convective precipitation into linear and cellular types. 
A training data set was created by manually choosing 48 precipitation “objects” from the 
data set. The selection was based on typical rainfall systems that occur in the US 
throughout the year. The systems were divided into convective and non-convective events 
based on rainfall rates, and then the convective cases were subdivided into linear and 
cellular cases using subjective techniques. 
Two groups of attributes were created for the classification system. The first was based on 
rainfall intensity. The distributions of rainfall amount were determined for each object and 
fit to a theoretical gamma distribution. The gamma scale and shape parameters of the 
distribution for each object were used as possible attributes. The second group was based 
on spatial continuity. A correlogram for each object was constructed, which showed the 
correlation between all possible pixels separated by a distance lag value. The area and 
eccentricity of various rainfall contour values were used as possible attributes. 
Tests using a hierarchical cluster analysis showed that the combination of the gamma scale 
parameter and the correlogram eccentricity was the best discriminator between 
precipitation classes. A cluster analysis using these two parameters was created and tested 
on the 48 objects in the training set, then on 100 objects in the testing data set. 

Results 

On the training data set, the cluster analysis was able to discriminate between convective 
and non-convective precipitation in 100% of the cases. It was able to classify between 
linear convection, cellular convection, and stratiform precipitation in 90.5% of the cases. 
Values were lower for the testing data set: 89% for the convective/non-convective 
distinction, and 85% for linear, cellular, and stratiform. 

Operational 
Capability 

The conclusions state that the procedure needs more refinement through use of more data in 
the training data set. More data may also reveal additional attributes for distinguishing 
between precipitation classes. It is not ready for operational classification of rainfall 
systems as more research is needed to refine the process. 
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Table A.2. Detailed summary of Zepeda-Arce et al. (2000), discussed in Section 2.1.2. 

Reference 
Zepeda-Arce, J, E. Foufoula-Georgiou, and K. Droegemeier, 2000: Space-time rainfall 
organization and its roll in validating quantitative precipitation forecasts. J. Geophys. Res., 
105 No. D8, 10 129-10 146. 

Weather 
Element Storm-scale Precipitation 

Model ARPS 6 km inner/18 km outer grid 

Data 
Hourly and 15-min accumulated precipitation forecasts from 6 km ARPS, hourly and 18-
min rainfall accumulations estimated from local WSR-88D radars on a 4 km grid from a 
multiple squall-line storm system. 

Time Period May 7-8, 1995 

Name of 
Technique Storm-Scale Statistical Measures 

Description 

This technique is made up of four algorithms designed to help model developers determine 
deficiencies in microphysical parameterizations by analyzing the quality of model 
precipitation forecasts. 
The first algorithm is a threat score (TS) that measures the model’s ability to predict the 
size of the precipitation area that has amounts exceeding a given threshold. The formula is 
TS=Ac/(Ao+Af – Ac) where Ac is the correctly forecast area size, Ao is the observed area 
size, and Af is the forecast area size. It can be computed over any desired grid scale. 
The second algorithm is a depth-area-duration curve, in which accumulated rainfall amount 
versus the size of the area over which that depth is exceeded is plotted for a fixed time 
duration. This shows the areal variance in amount for the forecast and observed 
precipitation individually, allowing a comparison of the internal precipitation structure 
between the forecast and the observations. 
The third algorithm uses results from previous studies on rainfall variability as a function 
of scale. These studies showed an increase in rainfall variance with spatial scale that 
remains logarithmically constant. Given that this scale invariance was often found to exist 
in observed precipitation, this method was used to determine if model forecast precipitation 
exhibited the same characteristics. 
The fourth algorithm expands on the idea of consistent spatial scale variance. It determines 
the variance in rainfall intensity over different space and time scales. As with the third 
method, consistencies in the graphs of the variance were found in past studies. Therefore, 
the method was used to determine if the forecast and observed variances were similar. 

Results 

Except for the TS, all routines were developed specifically for verification of precipitation 
forecasts. The results show that observations and forecasts are in greater agreement at 
larger spatial and temporal scales. While this result is probably intuitive, the routines show 
the values of the spatial and time scales at which they do come into close agreement. The 
last two measures are represented by lines with slopes. Model output compares well with 
the observations when the slopes and values of their lines are close in value. 

Operational 
Capability 

These routines were not developed for real-time operations, but for post-analysis of model 
forecasts to help model developers determine the weaknesses and strengths of the 
microphysical parameterizations. The mathematics are rather complicated and it is not clear 
how the output could be useful in an operational capacity. Three of the routines could only 
be used for precipitation. It would require considerable effort to transform the routines and 
create output useful to operations. 
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Table A.3. Detailed summary of Casati et al. (2004), discussed in Section 2.1.3. 

Reference 
Casati, B., G. Ross, and D. B. Stephenson, 2004: A new intensity-scale approach for the 
verification of spatial precipitation forecasts. Met. App., 11, 141-154. 

Weather 
Element Precipitation 

Model Nimrod (very short-range mesoscale NWP system at UK Met Office) 

Data Nimrod analyses of rainfall estimated from UK radar images, satellite, and surface data, 
and Nimrod 3-hour forecasts. 

Time Period 6 precipitation events in 1999 

Name of 
Technique Intensity Scale Verification 

Description 

This technique assesses the skill of the model precipitation forecasts as a function of spatial 
scale and intensity. The six cases were chosen to include a variety of precipitation features 
on different spatial scales, and to highlight the typical Nimrod forecast errors. 
The data needed processing before the verification technique was applied in order to obtain 
more reliable data (according to the authors). A small amount of uniformly distributed 
noise in the range -1/64 to +1/64 mm/hour was added to non-zero precipitation values in 
the analysis and forecast fields. This helped compensated for the effects caused by 
discretizing the archived data in multiples of 1/32 mm/hour. Then the precipitation rate 
values were normalized in a logarithmic (base 2) transformation. This normalization 
reduced the skewness of the rainfall rate distribution, due to the large amount of small 
values, and produced more normally distributed values. Finally, the forecasts were re-
calibrated by substituting each value in the forecast image with the value in the analysis 
image having the same cumulative probability, which is the probability that the 
precipitation rate will be a certain value or less, i.e. P[precipitation rate ≤ x], where x is in 
the range of the observed or forecast precipitation rates. 
The forecast and analysis were converted to binary images based on rainfall rate threshold: 
a “1” for values greater than and a “0” for values less than the threshold. A binary error 
image was created by subtracting the analysis binary image from the forecast binary image. 
Errors on different spatial scales were determined through a wavelet decomposition 
analysis. The error values from the wavelet analysis were used in calculations of MSE and 
SS, which revealed the performance of the model in both spatial and intensity scales. 

Results 

The contour graphs of the spatial and intensity MSE and SS are intuitive and show the 
spatial scales at which intensity errors are greatest, and the intensity scales at which spatial 
errors are greatest. 
The process of replacing forecast values with observed values having the same cumulative 
probability seems to “fudge” the forecast to be more like the observations. This does not 
appear to create a fair assessment of model performance. However, a graph of the re-
calibration function values used to make the transformation shows the forecast bias at 
different rainfall rates. In this case the model shows systematic behavior in forecasting too 
many low precipitation rate events and not enough high precipitation rate events. The 
authors contend that parameterization of these recalibration functions could be used to help 
calibrate future precipitation forecasts. 

Operational 
Capability 

The math appears to be simple enough to be able to run in real time. The authors believe 
that phenomena other than precipitation can be verified with this technique. Although the 
technique does not analyze the spatial displacement error mathematically, the binary error 
image could be used to determine that aspect. 
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Table A.4. Detailed summary of Marshall et al. (2004), discussed in Section 2.1.4. 

Reference 

Marshall, S. F., Pl. J. Sousounis, and T. A Hutchinson, 2004: Verifying mesoscale model 
precipitation forecasts using an acuity-fidelity approach. Preprint J13.3, Joint Session of 
20th Conf. on Wea. Anal. and Forecasting / 16th Conf. on Numerical Wea. Pred. / 17th 
Conf. on Probability and Statistics in the Atmos. Sci., Amer. Meteor. Soc., 11 – 15 January, 
Seattle, WA, 8 pp. 

Weather 
Element Precipitation 

Model Eta, RUC, two different grid configurations of WRF 

Data 3-hourly Eta/RUC and 12-min WRF precipitation forecasts, NCEP Stage IV hourly 
precipitation, 36.5 – 44 degrees N, 103 – 92 degrees W (Midwest US) 

Time Period April − May 2003 

Name of 
Technique Acuity-Fidelity 

Description 

The two metrics of acuity and fidelity were used to determine model performance. Acuity 
was calculated by finding the best matching forecast for every observation, and fidelity by 
finding the best matching observation for the forecast. The best match was not necessarily 
the observation or forecast that was closest in time or space. Acuity and fidelity were 
calculated separately by minimizing a cost function with four components: spatial 
difference, temporal difference, intensity difference, and missed events. 
The components were all converted to common units of distance through constant 
multipliers in order to calculate a cost function value. The authors assigned initial values to 
the constants, and then conducted sensitivity studies to determine the best value for these 
parameters by holding three of them constant while varying one. 

Results 

Graphic representations of the acuity and fidelity cost functions showed the locations and 
extent of the model errors. Graphs of the individual components of the cost function 
showed where most of the error was in the model (location, timing, intensity, and/or missed 
events). Mean acuity and fidelity values can be calculated for the entire grid to determine 
the overall model performance. 
The goal of the authors was to develop a technique that measured the skill of model 
precipitation forecasts much in the way a subjective analysis would in considering the 
distance, timing, and intensity errors. They believe this technique can be applied to 
phenomena other than precipitation. 

Operational 
Capability 

This appears to be another proof-of-concept approach that is not ready to transition into 
operations. The cost function component multipliers are configurable and the values used in 
the study could be used as a first guess in verifying precipitation forecasts, but sensitivity 
tests would have to be conducted to determine their appropriate magnitudes based on the 
chosen model, verification data, and phenomenon of interest.  
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Table A.5. Detailed summary of Bullock et al. (2004), discussed in Section 2.1.5. 

Reference 

Bullock, R., B. G. Brown, C. A Davis, M. Chapman, K. W. Manning, and R. Morss, 2004: 
An object-oriented approach to the verification of quantitative precipitation forecasts: Part I 
– Methodology. Preprint J12.4, Joint Session of 20th Conf. on Wea. Anal. and Forecasting 
/ 16th Conf. on Numerical Wea. Pred. / 17th Conf. on Probability and Statistics in the 
Atmos. Sci., Amer. Meteor. Soc., 11 – 15 January, Seattle, WA, 6 pp. 

Weather 
Element Precipitation 

Model Weather Research and Forecasting (WRF) 

Data CONUS precipitation forecasts 

Time Period Summer 2001 

Name of 
Technique Convolved Object Matching (AMU–selected name) 

Description 

The goal of this research was to develop and test an object-oriented method of evaluating 
quantitative precipitation forecasts. Both the forecast and observed fields of precipitation 
were resolved into objects, or regions-of-interest, which were then compared. 
The objects were created by first applying a filter to the raw data, called a convolving 
function, and then a threshold was applied to the convolved field to reveal the objects. The 
convolving function attenuated the large gradients in the data while retaining the small 
gradients. The authors contend that a threshold applied to the raw precipitation data field, in 
which there are large and varying spatial gradients, would not produce representative 
objects and give a convincing example in their Figures 1 and 2. The convolved data were 
filtered by a chosen threshold value equal to some value in the original precipitation field. 
A ‘mask’ field was created by setting all values above the threshold to 1 and all values 
below to 0. This resulted in a field of object shapes. A new grid was created from the 
original data in which the original data values were restored where the mask field was 1, 
and set to 0 where the mask field was 0. 
Shape attributes (e.g. centroid and axes) of each of the objects were calculated, and shapes 
(e.g. band aids and ellipses) were fit to the objects. The closer the forecast object attributes 
matched the observed object attributes, the better the forecast was said to be. Forecast 
quality could be summarized by statistics of object attribute differences. 

Results This paper did not show examples of model verification with observed data. Examples are 
shown in Part II and discussed in Table A.6. 

Operational 
Capability 

This article described the basic concept of this technique, but did not show any test results. 
It appears to be under development and still in the proof-of-concept stage.  
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Table A.6. Detailed summary of Chapman et al. (2004), discussed in Section 2.1.5. 

Reference 

Chapman, M., R. Bullock, B. G. Brown, C. A Davis, K. W. Manning, R. Morss, and A. 
Takacs, 2004: An object oriented approach to the verification of quantitative precipitation 
forecasts: Part II – Examples. Preprint J12.5, Joint Session of 20th Conf. on Wea. Anal. and 
Forecasting / 16th Conf. on Numerical Wea. Pred. / 17th Conf. on Probability and 
Statistics in the Atmos. Sci., Amer. Meteor. Soc., 11 – 15 January, Seattle, WA, 9 pp. 

Weather 
Element Precipitation 

Model 22 km WRF, 4 km WRF 

Data CONUS 22 km WRF precip, Stage IV analysis data smoothed to match 22 km model, 
BAMEX 4 km WRF and unsmoothed Stage IV analysis 

Time Period Summer 2001, 20 May – 6 July 2003 (Bow echo And MCV EXperiment - BAMEX) 

Name of 
Technique Convolved Object Matching (AMU–selected name) 

Description 

This was a two-part test of the technique described in Table A.5 using model and 
observational data. In the first part, verification results from three cases in the 22 km WRF 
and smoothed Stage IV analysis data archive were shown. In the second part, two cases 
from BAMEX were shown to illustrate the utility of looking at smaller scale objects to help 
match larger scale objects. 
In part one, the authors conducted tests to determine a threshold number of grid points 
between two or more objects below which the objects were merged into one and above 
which the objects were deemed separate. This required a human subjective analysis, but the 
results indicated to the authors that an automated matching technique would be useful in 
some cases. In one case they could not split a large forecast object over the CONUS as they 
were able to do with the observed objects. Another case showed that adjusting the grid 
point number threshold for convolution and/or object merging/separation would cause one 
precipitation area to be properly analyzed while causing another area to be split or merged 
improperly. 
In part two, the objects from the BAMEX data were created using thresholds that would 
analyze them on a larger scale. Then, the thresholds were changed to resolve smaller scale 
objects within the large scale objects. By adding the smaller scale features it was possible 
to consider two areas related if their small and large scale features were similar. 
They did not attempt to match objects and compare their attributes, but showed two useful 
displays comparing the model objects to the observed objects. One showed objects of 
forecast precipitation overlaid with the area of the objects for which there was 
corresponding observed precipitation. The other was just the opposite showing observed 
objects overlaid with the area of the object that was forecast. 

Results 

This study confirmed the ability of the technique to separate objects and match forecast 
objects to observed objects. More sophisticated merging and object matching routines are 
needed in the complex cases described in the first part of the article. Higher resolution data 
can be used to resolve smaller scale objects in larger synoptic scale objects, but 
comparisons must be done on the larger scale before analyzing the smaller scale. Work will 
continue to develop more sophisticated object identification and matching techniques 

Operational 
Capability 

This shows that the technique is beyond the proof-of-concept stage, but still needs further 
refining before it can be used in operations with confidence. 
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Table A.7. Detailed summary of Ebert and McBride (2000), discussed in Section 2.1.6. 

Reference 

Ebert, E. E., and J. L. McBride, 2000: Verification of precipitation in weather systems: 
Determination of systematic errors. J. Hydrology, 239, 179-202. 
More information on this technique can also be found at: 
http://www.bom.gov.au/bmrc/wefor/staff/eee/verif/CRA/CRA_verification.html

Weather 
Element Precipitation 

Model Australian Bureau of Meteorology Limited Area Prediction System (LAPS), 0.75º X 0.75° 
lat/lon resolution 

Data 24-hour accumulated precipitation from 23 UTC LAPS, Australian rain gage network daily 
rainfall analysis 

Time Period July 1995 – June 1999 

Name of 
Technique Contiguous Rain Area (CRA) technique 

Description 

This technique was based on that of Hoffman et al. (1995; Section 2.3.3, Table C.3). A 
CRA was defined as the union of the observed and forecast precipitation areas that 
exceeded a user-specified rainfall amount. The authors isolated individual precipitation 
systems over a smaller area rather than several systems over a larger area. In keeping with 
the ideas of Hoffman et al. (1995), the technique was tested with forecasts from a larger 
(regional) scale model. In this technique, the forecast area was shifted incrementally by grid 
points over the observed area until the total MSE in the verification domain was minimized. 
The verification domain was defined as the union of the original forecast area, the observed 
area, and the new shifted forecast area. The errors due to displacement, rain volume, and 
rain pattern were then calculated. 
Problems arose when observed rain occurred across a boundary such as a coastline, 
between observation-rich and observation-deprived areas, or at model grid boundaries. The 
authors conducted tests to determine how many grid points were needed in a truncated 
observed or modeled precipitation area in order to obtain realistic verification results. For 
their parameter settings, they found at least 20 grid points were needed. 

Results 

The user determines the size of the search area, or the maximum number of grid points 
beyond an observed (forecast) CRA to search for a forecast (observed) CRA. In this case, 
the authors used 5°, or ~700 km. Event verifications required CRAs that contained at least 
10 grid points within a 5 mm/day isohyet. Model systematic errors were only determined 
from CRAs where the observed area contained at least 20 grid points. Different criteria to 
verify smaller systems would likely yield different results. 
Out of over 1811 CRAs in the 4-year period, the algorithm was able to match 695. This was 
determined by the authors as enough to determine systematic errors in the model with 
confidence. 

Operational 
Capability 

This appears to be ready to use in a post-analysis mode to determine overall model 
performance, although the user must determine appropriate parameter settings through 
tests. CRA matching could also be done in real time over a smaller grid (see Table A.8). It 
may also have utility in verifying other phenomena that cover a specified area, e.g. a low 
pressure center. Consideration must be given to systems that cross data boundaries, as 
stated in the Description. 
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Table A.8. Detailed summary of Grams et al. (2004), discussed in Section 2.1.6. 

Reference 

Grams, J. S., W. A. Gallus, L. S. Wharton, S. Koch, E. E. Ebert, and A. Loughe, 2004: Use 
of a modified Ebert-McBride technique to verify IHOP QPF as a function of convective 
system morphology. Preprint J13.4, Joint Session of 20th Conf. on Wea. Anal. and 
Forecasting / 16th Conf. on Numerical Wea. Pred. / 17th Conf. on Probability and 
Statistics in the Atmos. Sci., Amer. Meteor. Soc., 11 – 15 January, Seattle, WA,      9 pp. 

Weather 
Element Convective precipitation 

Model 12 km Eta, 12 km Penn State/National Center for Atmospheric Research Mesoscale Model 
version 5 (MM5) 

Data 
From International H2O Project (IHOP): 6-hour accumulated precipitation in first 6 hours 
of each model run, Stage IV 6-hour accumulated precip, 2 km 30-min NEXRAD 
Information Dissemination Service (NIDS) radar images. Area over the Great Plains. 

Time Period 9 May – 26 June 2002 

Name of 
Technique CRA (Table A.7) 

Description 

The goal of this study was to determine how well the mesoscale models predicted 
precipitation systems based on their morphology. They used the CRA method described in 
the previous table but modified it to account for the higher spatial resolution of the models 
and the shorter time period over which precipitation accumulated. The modifications 
included reducing the percentage of grid points allowed to shift outside the domain, and 
reducing the critical precipitation mass threshold by a factor of 4 to reflect shorter 6-hour 
accumulation periods rather than 24 hours. The authors further defined different 
morphology types into linear and non-linear groupings, and were able to create CRAs 
based on these criteria. 

Results 
The CRA technique was used with success after the modifications to the technique. The 
authors tested the modifications thoroughly to ensure they would yield the desired results 
for this work. 

Operational 
Capability 

Again, this technique was used in a post-analysis study, not on real-time model output and 
observations. This study shows that the technique’s parameters can be changed to 
accommodate any time and space resolution, and that it could be possible to use the 
technique on phenomena other than convective rain. It still has the same border issues as 
described in Table A.7. 

 

 18



Appendix B 

Table B.1. Detailed summary of Case et al. (2004), discussed in Section 2.2. 

Reference 
Case, J. L., J. Manobianco, J. E. Lane, C. D. Immer, and F. J. Merceret, 2004: An objective 
technique for verifying sea breezes in high-resolution numerical weather prediction models. 
Wea. Forecasting, 19, 690-705. 

Weather 
Element Sea breeze, all other boundaries not considered 

Model Regional Atmospheric Modeling System (RAMS) 

Data KSC/CCAFS wind tower network and RAMS grid forecasts 

Time Period July and August 2000 

Name of 
Technique Contour Error Map (CEM) 

Description 

The technique interpolated observed data to the model grid, and then used a binary 
threshold to distinguish between onshore (easterly) and offshore (westerly) flow. A time 
estimation filter was applied to the sine of the wind direction to determine the timing of the 
transition from offshore to onshore at each grid point. 
The transition times could be displayed in a 2-D contoured plot. The east-west transition 
time gradient was computed in order to determine the progression of the inland-propagating 
sea breeze boundary (defined as a positive gradient). A negative time gradient in the east to 
west direction was assumed to be the result of a river breeze or convective outflows and 
was eliminated from the analysis in a process called image erosion. 
The verification statistics included a fractional area of the grid with only observed sea 
breeze transition times (forecast miss), fractional area of grid with only forecast sea breeze 
transition times (false alarm), and the average and standard deviation of the sea breeze 
transition time errors at grid points that experienced both observed and forecast sea breeze 
transition. 

Results 

The CEM identified the observed or forecast sea breeze occurrence or non-occurrence 
correctly 93% of the time. The reasons for failures 7% of the time included false 
identification of the observed/forecast sea breeze due to precipitation outflows, the 
observed/forecast sea breeze ending prematurely because of precipitation outflows, or the 
observed/forecast sea breeze barely propagating inland due to strong synoptic-scale 
westerly flow. 

Operational 
Capability 

The CEM technique was designed as post-process, proof-of-concept software. The filter is 
not designed to run in real-time, but the authors indicate that it could be modified to do so. 
The technique is tuned to detect sea breeze occurrence in the specific geographical area of 
KSC/CCAFS using high temporal and spatial resolution data. A subjective evaluation is 
still needed with this technique due to possible contamination of results from observed or 
forecast precipitation outflow or other boundaries. Furthermore, the algorithm may not 
perform well in data-sparse regions.  

 19



Appendix C 

Table C.1. Detailed summary of Sandgathe and Heiss (2004), discussed in Section 2.3.1. 

Reference 

Sandgathe, S. A. and L. Heiss, 2004: MVT – An automated mesoscale verification tool. 
Preprint J13.1, Joint Session of 20th Conf. on Wea. Anal. and Forecasting / 16th Conf. on 
Numerical Wea. Pred. / 17th Conf. on Probability and Statistics in the Atmos. Sci., Amer. 
Meteor. Soc., 11 – 15 January, Seattle, WA, 4 pp. 

Weather 
Element No element was tested 

Model University of Washington Short Range Mesoscale Ensemble Forecast (SREF) 

Data Model analyses, SREF output 

Time Period No results were discussed or shown in the paper 

Name of 
Technique Mesoscale Verification Tool (MVT) and Mesoscale Data Manipulator (MDP) 

Description 

The authors stated that a verification tool should have the following attributes:  
• Automated and flexible, adaptable to issues concerning forecast 

parameters/timing/intensity, 
• Capable of evaluating distortion/timing/amplitude errors, 
• Able to address large numbers of cases and multiple models rapidly, and 
• Should be statistically sound and present results that are easy to interpret. 

The MVT separated the forecast error into amplitude and timing components using the 
procedure defined by Hoffman (1995, Table C.3). This method used a search technique to 
find a forecast object on a grid that was similar to an observed object. The authors found 
that the full grid point-by-grid point search was too slow to be operationally feasible, so 
they employed accelerated search techniques based on image matching algorithms used by 
the motion picture industry. 
The main focus of the paper was a web-based GUI that allows the user to see graphical 
representations of the model output, and the MDP to be used for selection of dates, 
initialization times, model domain, verifying field and forecast hour, and other items.  

Results 

The MVT does not verify model forecasts of any specific phenomena at this time, but 
research is ongoing. Future plans include more development and testing of the verification 
method in the MVT. 
There were no results on the performance of the MVT or MDP since they are not yet fully 
developed. However, the GUI capabilities are impressive. 

Operational 
Capability 

An email conversation with the author indicated that the verification techniques are still 
being developed and the system is not ready for use. In the conclusion section of the paper 
that authors state: “The MVT has been tested extensively, but the MDP needs more 
analysis. MVT has not been proven to be a desired replacement of labor-intensive 
subjective analysis of model phenomenological verification.” 
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Table C.2. Detailed summary of Nachamkin (2004) and Nachamkin et al. (2004), discussed in 
Section 2.3.2. 

Reference 

1) Nachamkin, J. E., 2004: Mesoscale verification using meteorological composites. Mon. 
Wea. Rev., 132, 941-955. 

2) Nachamkin, J. E., S. Chen, and J. M. Schmidt, 2004: Composite-based verification of 
precipitation forecasts from a mesoscale model. Preprint J13.5, Joint Session of 20th 
Conf. on Wea. Anal. and Forecasting / 16th Conf. on Numerical Wea. Pred. / 17th Conf. 
on Probability and Statistics in the Atmos. Sci., Amer. Meteor. Soc., 11 – 15 January, 
Seattle, WA, 5 pp. 

Weather 
Element 

1) Mistral events–strong northerly winds that occur over the northern Mediterranean Sea 
2) Very heavy precipitation events 

Model Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) 

Data 

1) Hourly model forecasts, 0 – 72 hours, from model runs initialized at 0000 and 1200 
UTC, Special Sensor Microwave Imager (SSM/I) retrieved winds 

2) 24-hour accumulated precipitation: model data valid at 24 and 48 hours initialized at 
1200 UTC, NCEP River Forecast Center analyses valid at 1200 UTC 

Time Period 
1) November 2000 – October 2001 
2) 15 April – 7 September 2003 

Name of 
Technique Composite Verification 

Description 

1) All contiguous points with wind speeds > 12 m s-1 and directions between 270°and 70° 
were defined as mistrals in the forecasts and observations. The search for such points 
was limited to a specific region of the Mediterranean where mistrals are known to occur. 

2) A heavy rain event was defined as any contiguous area of precipitation over the CONUS 
containing 25 mm or more of precipitation in a 24-hour period. The model and observed 
data sets were filtered to include only these heavy rain events. 

The forecast and observed events were each placed on separate relative grids, at a 
resolution equal to that of the model, with the center of mass of the events placed at the 
center grid point; i.e. the forecast relative grid was conditional on the existence of forecast 
events and the observation relative grid was conditional on the existence of observed 
events. The observational (forecast) data were then positioned on the forecast (observation) 
relative grid in the position relative to the forecast (observed) event on the regular grid. 
The average magnitude of the observed and forecast events (wind speed or precipitation 
amount) were averaged and the number of events in the observations and forecasts were 
counted. 

Results 

The average values were displayed on the relative grids with the forecast values overlaid by 
the observed values. These maps show differences in the magnitude, size, shape, and 
location of the forecast and observed events. In general, they answer two questions: what 
was observed if an event was forecast and what was forecast if an event was observed. 
Charts of event frequencies also show whether the model over- or under-predicted the 
number of events. 

Operational 
Capability 

This method is based on a fairly simple concept. The statistics are easy to calculate and it 
can be applied to a variety of phenomena. 
This method was used on an archive of events to get the overall results of how well the 
model predicted the occurrence, amounts, and locations of the events. This would be a good 
technique for climatological verification of specific phenomena, and may be modified for 
use on individual events. 
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Table C.3. Detailed summary of Hoffman et al. (1995), discussed in Section 2.3.3. 

Reference Hoffman, R. N., Z. Liu, J-F Louis, and C. Grassotti, 1995: Distortion Representation of 
Forecast Errors, Mon. Wea. Rev., 123, 2758-2770. 

Weather 
Element Large scale features of precipitable water, 10 m wind field, 500 mb geopotential heights 

Model Operational European Centre for Medium-Range Weather Forecasts (ECMWF), U.S. Air 
Force (USAF) Global Weather Central global spectral model 

Data SSM/I precipitable water, ERS-1 scatterometer ocean surface wind speed, USAF 
operational high resolution analysis system 

Time Period 29 Dec 1991, 5 March 1992, 4 January 1989 

Name of 
Technique Object Distortion 

Description 

An object in this study was considered to be on the synoptic scale, not the mesoscale. The 
distortion of an object was made up of a spatial displacement error and an amplitude error. 
Any error not accounted for by the distortion was deemed the residual error. The 
displacement was defined to be a smooth transformation of a field without modification to 
the amplitude of the data. The transformation could include translation, stretching, and 
rotating of the object through movement of individual grid points. Limits were imposed on 
how far from the original grid point the displaced data could be moved. The values of the 
data were then multiplied by an amplification factor (positively or negatively) to fit the 
observed field as closely as possible. The displacement and amplification took place until 
the RMS error was minimized. 
The authors discussed another method in which the entire field was displaced and amplified 
as one object. The entire forecast object was displaced in units of 1° latitude and longitude 
to match as closely as possible the location of the observed object. Then all magnitudes 
were multiplied by an amplitude factor that minimized the error between all forecast and 
observed data point values. As in the previous method, the displacement and amplitude 
factors were chosen such that the total RMS error in the analysis area was minimized. This 
was the pre-cursor to the Ebert-McBride CRA technique (Table A.7, Table A.8). 

Results 

The displacement, amplitude, and residual errors were displayed on a 2-D contour plot once 
calculated, showing where the largest errors existed in the forecast. In the individual grid 
point method, vectors showed the direction and magnitude of movement when the 
individual grid point values were displaced. There was no consideration of temporal 
displacement. 

Operational 
Capability 

This technique was developed as a prototype. It is a relatively simple idea implemented 
with complex mathematics that could be used in verifying model forecasts of several types 
of large-scale weather phenomena. It may prove difficult in verifying convective 
precipitation in east-central Florida given the usual situation of multiple cells forming 
through boundary interactions. This may also be useful as a post-analysis verification tool. 
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List of Acronyms 

45 WS 45th Weather Squadron 

AMU Applied Meteorology Unit 

ARPS Advanced Regional Prediction System 

AWIPS Advanced Weather Interactive Processing 
System 

BAMEX Bow echo And Mcv EXperiment 

CCAFS Cape Canaveral Air Force Station 

CEM Contour Error Map 

CONUS Continental U.S. 

CRA Contiguous Rain Area 

GFS Global Forecast System 

GUI Graphical User Interface 

IHOP International H2O Project 

KSC Kennedy Space Center 

LAPS Limited Area Precipitation System 

MDP Mesoscale Data Manipulator 

MSE Mean Square Error 

MVT Mesoscale Verification Tool 

NAM North American Mesoscale 

NCEP National Centers for Environmental 
Prediction 

NWP Numerical Weather Prediction 

NWS MLB National Weather Service in Melbourne, 
FL 

RAMS Regional Atmospheric Mesoscale System 

RMS Root Mean Square 

RUC Rapid Update Cycle 

SMG Spaceflight Meteorology Group 

SREF Short Range mesoscale Ensemble 
Forecast 

SS Skill Score 

SSM/I Special Sensor Microwave Imager 

TS Threat Score 

USAF U.S. Air Force 

WRF Weather Research and Forecasting 
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NOTICE 

Mention of a copyrighted, trademarked or proprietary product, service, or document does not constitute 
endorsement thereof by the author, ENSCO, Inc., the AMU, the National Aeronautics and Space Administration, or 
the United States Government. Any such mention is solely to inform the reader of the resources used to conduct the 
work reported herein. 
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