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Executive Summary 
An ongoing challenge in mesoscale numerical weather prediction (NWP) is to determine the best method 

for verifying the performance of high-resolution, detailed forecasts.  Traditional objective techniques that 
evaluate NWP model performance based on point error statistics and precipitation threat scores can no longer 
accurately represent the skill of mesoscale NWP models as resolutions continue to increase along with available 
computing power.  Subjective evaluation techniques are very costly and time-consuming.  As a result, objective 
phenomenological-based verification methodologies are required in order to determine the representative skill 
and added value of high-resolution NWP models.   

This report presents a new objective technique to verify predictions of the sea-breeze phenomenon over 
east-central Florida by the Regional Atmospheric Modeling System (RAMS) mesoscale numerical weather 
prediction (NWP) model.  The Contour Error Map (CEM) technique identifies sea-breeze transition times in 
objectively-analyzed grids of observed and forecast wind, verifies the forecast sea-breeze transition times 
against the observed times, and computes the mean post-sea breeze wind direction and speed to compare the 
observed and forecast winds behind the sea-breeze front.   

The CEM technique is superior to traditional objective verification techniques and previously-used 
subjective verification methodologies because: 

• It is automated, requiring little manual intervention, 

• It accounts for both spatial and temporal scales and variations, 

• It accurately identifies and verifies the sea-breeze transition times, and  

• It provides verification contour maps and simple statistical parameters for easy interpretation. 

The CEM uses a parallel lowpass boxcar filter and a high-order bandpass filter to identify the sea-breeze 
transition times in the observed and model grid points.  Once the transition times are identified, CEM fits a 
Gaussian histogram function to the actual histogram of transition time differences between the model and 
observations.  The fitted parameters of the Gaussian function subsequently explain the timing bias and variance 
of the timing differences across the valid comparison domain.  Once the transition times are all identified at 
each grid point, the CEM computes the mean wind direction and speed during the remainder of the day for all 
times and grid points after the sea-breeze transition time.   

The CEM technique performed quite well when compared to independent meteorological assessments of 
the sea-breeze transition times and results from a previously published subjective evaluation.  The algorithm 
correctly identified a forecast or observed sea-breeze occurrence or absence 93% of the time during the two-
month evaluation period from July and August 2000.  Nearly all failures in CEM were the result of complex 
precipitation features (observed or forecast) that contaminated the wind field, resulting in a false identification 
of a sea-breeze transition.  A qualitative comparison between the CEM timing errors and the subjectively 
determined observed and forecast transition times indicate that the algorithm performed very well overall.  
Most discrepancies between the CEM results and the subjective analysis were again caused by observed or 
forecast areas of precipitation that led to complex wind patterns.  The CEM also failed on a day when the 
observed sea-breeze transition affected only a very small portion of the verification domain. 

Based on the results of CEM, the RAMS tended to predict the onset and movement of the sea-breeze 
transition too early and/or quickly.  The domain-wide timing biases provided by CEM indicated an early bias 
on 30 out of 37 days when both an observed and forecast sea breeze occurred over the same portions of the 
analysis domain.  These results are consistent with previous subjective verifications of the RAMS sea breeze 
predictions.  A comparison of the mean post-sea breeze winds indicate that RAMS has a positive wind-speed 
bias for all days, which is also consistent with the early bias in the sea-breeze transition time since the higher 
wind speeds resulted in a faster inland penetration of the sea breeze compared to reality. 
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1. Introduction 

Mesoscale weather prediction involves forecasts for specific locations at precise times, such as a wind 
forecast for launch complex 39A at 0700.  Numerical Weather Prediction (NWP) models are in widespread 
operational use for general regional and global forecasts, but the technology still needs improvement for 
application and performance evaluation at the mesoscale.  An ongoing difficulty in mesoscale NWP is to 
determine the best method for verifying the performance of high-resolution, detailed forecasts.  Traditional 
objective techniques that evaluate NWP model performance based on point error statistics and precipitation threat 
scores can no longer accurately represent the skill of mesoscale NWP models as resolutions continue to increase 
along with available computing power.  Subjective evaluation techniques are very costly and time-consuming.  As 
a result, objective phenomenological-based verification methodologies are required in order to determine the 
representative skill and added value of high-resolution NWP models.   

A coordinated effort between personnel from Dynacs, Inc. and the Applied Meteorology Unit (operated by 
ENSCO Inc.) was established in order to develop advanced technologies for objectively evaluating the 
performance of the Regional Atmospheric Modeling System (RAMS; Pielke et al. 1992) mesoscale NWP model, 
currently used operationally on the Eastern Range.  These technologies were applied to evaluate model 
performance in forecasting the sea breeze (SB) phenomenon over east-central Florida.  The verification of the SB 
was chosen because this phenomenon occurs quite frequently in east-central Florida, particularly in the spring and 
summer months.  In addition, the SB can significantly impact space operations due to the sharp wind shifts and 
thunderstorm development often associated with SB transition zones. 

Some recent studies have addressed the deficiencies in applying traditional objective verification statistics to 
mesoscale models, and presented alternative means for verifying phenomena in mesoscale models.  Nutter and 
Manobianco (1999) and Manobianco and Nutter (1999) performed an objective point verification and subjective 
phenomenological verification, respectively, of the 29-km version of the National Center for Environmental 
Prediction (NCEP) meso-Eta model.  Case et al. (2002) performed both an objective and subjective verification of 
RAMS during the 2000 Florida summer, including a validation of the model predicted SB and daily thunderstorm 
initiation.  These studies demonstrated that objective point error statistics alone (i.e. measures-oriented approach) 
cannot adequately determine a mesoscale model’s utility, and that phenomenological verification is also required 
as part of the validation process.  While these studies successfully quantified the value of the mesoscale models in 
predicting specific meteorological phenomena, a manual subjective intervention was used to perform the 
phenomenological verification, which can be quite expensive in terms of the required manpower resources. 

Recent efforts presented by Baldwin et al. (2001) and Baldwin et al. (2002) have demonstrated the need for 
an improved, events-oriented technique for precipitation verification rather than the traditional measures-oriented 
or distributions-oriented methods of verification.  Baldwin et al. (2001) illustrated the problem by showing a 
theoretical distribution of observed precipitation with embedded heavy cells.  The authors then verified two 
hypothetical forecast fields, one with a smooth precipitation pattern without any embedded cells and another with 
a very similar pattern to the simulated observed field, but slightly out of phase.  The authors demonstrated the 
failure of traditional measures-oriented and distributions-oriented approaches in that the smooth forecast field 
generated better statistics (i.e. root mean square error, bias, threat score, and correlation coefficient) despite 
appearing less realistic than the other forecast precipitation pattern.  Baldwin et al. (2002) built upon this premise 
by developing an events-oriented verification technique using a cluster analysis on different modes of 
precipitation patterns.   

The primary goal of this project has been to develop algorithms and software to demonstrate a proof-of-
concept procedure to automatically detect and identify a SB from forecast and observational wind data, and 
compare the two SB data sets in a meaningful, quantitative manner for verification.  The initial strategy was based 
on processing a time sequence of images in the spatial domain, since it seemed logical that the observed features 
of interest are mostly visible in the spatial domain.  This initial strategy was not entirely successful since the SB 
feature is not always apparent in single spatial images.  Therefore, a robust methodology was developed to treat 
the spatial and temporal data simultaneously.  

The remainder of this report is organized as follows.  Section 2 describes the observed data and RAMS model 
configuration used to develop the objective technique for verifying the SB phenomenon.  Section 3 explains the 
methodology used to develop the objective SB verification technique and provides some example output.  Section 
4 presents a validation of the objective algorithm and the verification results and Section 5 summarizes the report.  
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2. Model and Observational Data 

2.1 RAMS Configuration 

The three-dimensional, non-hydrostatic mode of RAMS (version 4a) was run on four nested grids with a 
horizontal grid spacing of 60, 15, 5, and 1.25 km (Figure 1).  RAMS uses a stretched vertical coordinate from near 
the surface up to 18195 m, with additional vertical levels in grids 3 and 4 to provide enhanced vertical resolution 
near the ground.  A summary of the horizontal and vertical grid parameters is provided in Table 1.  The physical 
parameterization schemes used in ERDAS RAMS include a microphysics scheme following Cotton et al. (1982), a 
modified Kuo cumulus convection scheme (Tremback 1990), the Chen and Cotton (1988) radiation scheme, a 
Mellor and Yamada (1982) type turbulence closure, and an 11-layer soil-vegetation model (Tremback and Kessler 
1985) with fixed soil moisture in the initial condition.  The modified Kuo scheme is run on grids 1−3 whereas grid 
4 utilizes explicit convection only.  The mixed-phase microphysics scheme is run on all four grids. 

RAMS is initialized twice-daily at 0000 and 1200 UTC using the Eta 12-h forecast grids from its forecast 
cycle 12 hours earlier (due to operational time constraints), as well as available observational data including the 
CCAFS rawinsonde (XMR), Aviation Routine Weather Reports (METAR), buoys, and KSC/CCAFS wind-tower, 
915-MHz, and 50-MHz Doppler Radar Wind Profiler data.  No variational data assimilation or nudging technique 
is applied when incorporating observational data.  Instead, RAMS is initialized from a cold start by integrating the 
model forward in time from a gridded field without any balancing or data assimilation steps.  Observational data 
are analyzed onto hybrid coordinates using the RAMS Isentropic Analysis (ISAN) package (Tremback 1990).  
The ISAN hybrid coordinate consists of a combination of isentropes and terrain-following surfaces on which data 
are analyzed within the RAMS model domain, similar to the NCEP Rapid Update Cycle model (Benjamin et al. 
1998).  For sea-surface temperature initialization, RAMS uses fixed monthly climatological means on grid 1, and 
these values are subsequently interpolated to the inner grids.  The lateral boundary conditions are nudged (Davies 
1983) by 12−36-h forecasts from the NCEP Eta model, interpolated onto an 80-km grid.  Output from the Eta 
model is available every 6 h for boundary conditions to RAMS.  Two-way interactive boundary conditions are 
used on the inner three nested grids.   
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Figure 1. The RAMS domains for the 60-km mesh grid (grid 1) 
covering much of the southeastern United States and adjacent 
coastal waters, the 15-km mesh grid (grid 2) covering the Florida 
peninsula and adjacent coastal waters, the 5-km mesh grid (grid 3) 
covering east-central Florida and adjacent coastal waters, and the 
1.25-km mesh grid (grid 4) covering the area immediately 
surrounding KSC/CCAFS. 

 

Table 1.  A summary of the grid configuration parameters for all four RAMS grids.  The model 
parameters include the number of grid points in the x, y, and z directions (nx, ny, and nz), horizontal grid 
spacing (dx), minimum and maximum vertical resolutions (dzmin and dzmax), and the heights of the 
minimum and maximum physical vertical levels (z-min and z-max), with all distances given in meters. 

Grid nx ny nz dx (m) dzmin (m) dzmax (m) z-min* (m) z-max (m) 
1 36 40 33 60000 50 750 23 18195 
2 38 46 33 15000 50 750 23 18195 
3 41 50 36 5000 25 750 11 18195 
4 74 90 36 1250 25 750 11 18195 

*z-min actually represents the 2nd vertical level, which is the first model level above ground.  For computational 
purposes, the height of the first model level for each grid is below ground at -20, -20, -11, and -11 m for grids 1, 
2, 3, and 4, respectively. 

2.2 Data Preparation 

This study used the high-resolution network of 44 wind towers across KSC/CCAFS (Figure 2) in conjunction 
with NWP forecasts from RAMS for July and August 2000.  The KSC/CCAFS tower network has an average 
station spacing of ~5 km and the data archive provided wind information every five minutes.  The RAMS NWP 
model output from the innermost grid 4 centered on KSC/CCAFS was used for the development of the SB 
verification algorithm. 
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Figure 2. The locations of the 44 KSC/CCAFS observational towers used 
to verify the RAMS forecast sea breezes over east-central Florida. 

 

The original operational RAMS forecast output was saved only once per hour due to disk space limitations on 
the operational system.  This relatively coarse time resolution presented a limiting factor for the robustness of an 
objective verification technique.  As a result, the daily RAMS forecasts were re-run for all of July and August 
2000 in order to generate NWP model output every five minutes, consistent with the time resolution of the 
observed tower data.   

To conduct a head-to-head comparison between the observed and forecast fields, the gridded RAMS forecasts 
were interpolated to the location and height of the KSC/CCAFS tower observations.  Then, the observed and point 
forecast winds were analyzed objectively onto the 1.25-km RAMS forecast grid using identical  parameters of the 
Barnes (1964) algorithm.  As a result, the objective analysis grid of observations and forecasts has coverage only 
within the domain of the KSC/CCAFS wind-tower network shown in Figure 2.   

The motivation for re-analyzing point forecast data on the 1.25-km RAMS forecast grid was threefold: 

• The original RAMS gridded forecasts contains wind information over both land and water, whereas the 
KSC/CCAFS tower observations are located solely over land.  By interpolating RAMS forecasts from the 
original grid to the tower locations and then analyzing the observed and point forecast data back to the 
RAMS grid, the resulting objective analysis will represent a fair comparison between the observed and 
forecast wind fields. 

• Re-analyzing point forecast data at each tower location results in observed and forecast wind fields with 
similar resolvable scales of motion. 

• Objectively analyzing data onto a grid with evenly-spaced points provides a favorable platform for both 
analysis and display purposes. 
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3. Sea-Breeze Detection and Verification Methodology 

3.1 Contour Error Map Algorithm Development 

The predominant mesoscale feature across the Florida peninsula during the summer months is the land-sea 
breeze oscillation (LSBO).  Intense solar heating during the day creates a thermal contrast between air over land 
(Ta) and air over the water (Tw).  When Ta exceeds Tw sufficiently, a thermally-induced direct circulation results in 
the lowest few kilometers of the atmosphere.  Near the surface, air flows from the cooler air mass residing over 
water to the warmer air mass over land, whereas a return circulation aloft flows from land to water.  A boundary 
interface or SB “front” often develops at the leading edge of the SB circulation, and advances inland as the day 
progresses.  Air rises along this leading edge while air descends above the water, completing the direct circulation.   

At night, the SB circulation collapses after the thermal contrast between land and water weakens, resulting in 
surface winds blowing from land to water (i.e. the land breeze).  The land-breeze circulation is generally weaker 
than the sea breeze in both velocity and height of development since the ocean-based heat source for the land 
breeze is much weaker than the land-based heat source for the SB circulation (Atkinson 1981). 

Attempting to observe a SB passage from a sequence of spatial images is a logical first approach to this 
problem.  Whether using a subjective manual method incorporating an animated image loop or an objective 
automatic method of detection, the spatial gradient of wind direction (and/or wind speed) is the observed feature 
of interest, representing the SB transition zone.   

To determine the occurrence and timing of the sea-breeze passage, the development and maintenance of a 
wind-shift from an offshore to an onshore wind component must occur.  During prevailing easterly (onshore) 
flow, an increase in wind speed can occur during the morning hours, signifying a sea-breeze passage; however, 
these sea breezes tend to be weak and are not taken into account for this study.  These wind direction criteria were 
applied to both the observed and RAMS forecasts to determine the forecast sea-breeze passage.  The coastline of 
east-central Florida is approximately oriented along a 335-155° line; however, for the purposes of simplifying the 
initial technique development, wind directions between 0° and 180° were considered onshore winds, while 180° to 
360° wind directions were defined as offshore.   

A sea-breeze front along Florida’s east coast is often accompanied by a sharp clearing line and reflectivity 
fine-line that propagate westward with time.  Radar images of radar reflectivity often show a distinct SB transition 
zone within spatial extents on the order of 100 km or more.  Problems can arise when observing reflectivity or 
wind data over smaller spatial extents, such as that associated with the KSC/CCAFS wind tower network.  In 
addition, local conditions over the KSC/CCAFS region include effects from the Indian and Banana rivers (river 
breezes, see Fig. 2), as well as convective thunderstorm activity, which often corrupt and mask the SB passage 
over this small mesoscale region.  In addition, the wind direction field occasionally changes gradually, which 
results in a small spatial gradient rather than a distinct frontal transition from offshore to onshore flow.   

Two objective techniques were examined to identify and compare forecast versus observed SB boundaries 
using gridded observed and RAMS forecast data.  During the first portion of the project, a method was developed 
that utilized image-processing methods to identify gradients in wind direction and wind speed.  The algorithm 
underwent extensive tuning, but the boundaries identified by the algorithm were typically discontinuous and 
noisy.   

A second approach, named Contour Error Map (CEM) was then examined using a binary threshold to 
distinguish between easterly (onshore) and westerly (offshore) wind directions.  This method incorporated both 
spatial and temporal wind data at each grid point to identify observed and forecast SB transition times.  A filtering 
technique was implemented to identify the correct transition times from offshore to onshore wind flow.  To ensure 
focus on the SB boundary only, an erosion technique was introduced to remove extraneous boundaries not 
associated with the primary SB front, such as river breezes and precipitation outflow boundaries.  The components 
of the CEM method are described in more detail below. 

The resultant version I of CEM gave the time bias (forecast − observed) of wind-direction transition from 
offshore to onshore.  A histogram of SB transition times was also generated and a Gaussian histogram function 
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kĥ  was fitted (see Appendix A) to the CEM histogram hk in order to quantify and parameterize the comparison in 
terms of four quantities:  

• τ ≡ mean bias  
• σ ≡ standard deviation of bias   
• fO ≡ fractional grid area with only observed SB transition   
• fR ≡ fractional grid area with only RAMS SB transition 

The form of the Gaussian histogram function used in this study is given by: 

22 2/)( 
2

1ˆ στ

πσ
−−∆

−−
= ktRO

k et
ff

h          (1) 

where tk is the time corresponding to hk, the subscript k corresponds to the kth 5-minute bin (the forecast – 
observed SB transition time difference), and ∆t = 5 min (the time interval between successive observed and 
forecast wind fields). 

For days with an overlapping observed and forecast SB transition within the grid domain, the Gaussian 
function fit was performed to produce a set of parameters that describe the quality of the RAMS forecast SB.  
Days that have small mean biases and standard deviations of the bias indicate more skillful forecasts of the SB 
transition timing and movement.  In addition, the mean wind direction and wind speed was computed on the 
seaward side of the SB transitions in order to determine the skillfulness of RAMS in predicting the movement of 
the SB boundary, as well as the characteristics of the post-SB wind environment.  The calculations were made for 
all times and grid points following a SB transition. 

The CEM-I binary detection scheme appeared useful, but its performance suffered when the LSBO signal was 
contaminated by microscale convective winds, river breezes, or synoptic wind shifts.  In some cases, the LSBO 
signal was small compared to the synoptic background.  A synoptic shift, coupled with relatively small amplitude 
LSBO, resulted in the CEM-I binary wind direction analysis being inadequate to detect and quantify a SB passage 
for a wide range of cases. 

As a result, a second version of CEM was developed to build upon the framework of CEM-I by adding a time 
estimation filter to determine the SB transition times in both the observed and forecast grids.  Each grid point was 
processed individually by a detector composed of a parallel lowpass (LP) boxcar filter (Rabiner and Gold 1975) 
and a high-order bandpass (BP) filter (Hillman and Lane 1989) centered on a frequency of 1/day (refer to 
Appendix B for filter details).  The LP filter was used to remove microscale, convective features with a frequency 
on the order of 1/minute, whereas the BP filter was designed to simulate the LSBO for a 24-h periodic cycle, as 
observed in nature.  After each grid point was pre-processed by the SB filter, the spatial image was reconstructed. 

The CEM-II algorithm (hereafter referred to as simply CEM) consists of four sections, as shown in Figure 3: 

(1) Point Processing: Calculates the sine of wind direction at each point in x, y, and t space. 

(2) Temporal Processing: Processes a continuous time series at each x-y grid point to determine a best 
estimate of the offshore to onshore wind transition time. 

(3) Spatial Processing: Computes two-dimensional spatial gradients of SB filtered and recombined spatial 
images. 

(4) Comparison and Analysis: Compares RAMS and observed fields for similarities using the Gaussian fitted 
function and corresponding parameters defined in the CEM-I section, as well as computing the mean post-
SB wind direction and speed.   
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Figure 3.  The CEM algorithm block diagram illustrating the order of processing to generate 
verification data fields. 

3.2 Sea-Breeze Transition Time Estimation Filter 

The SB time estimation filter can be considered as a SB transition time detector and estimator made up of two 
filter sections: a low pass (LP) filter in parallel with a dual-band pass (BP) filter.  The BP filter is based on a 
recursive or infinite impulse response (IIR) filter, whereas the LP filter is a non-recursive or finite impulse 
response (FIR) filter.  The LP filter is implemented as a moving average of length L = 31 points, centered about 
the middle of the sliding window.  The LP filter can also be considered as a FIR filter of length L where all 
coefficients are equal to unity. 

The BP filter is based on an 8th-order, maximally-flat, Butterworth, IIR filter design.  This filter type is not 
zero or linear phase; however, summing the outputs of two identical IIR filter structures, where the input data in 
the second filter is read in reverse order, results in a zero-phase recursive structure.  The center frequency f0 is set 
to match the 24-hour LSBO period.  The BP filter is implemented by summing the outputs of two 8th-order filters 
with identical characteristics, where one filter processes a block of data forward in time, and the other filter 
processes the data backward in time from the end of the block.   

The SB filter structure is not designed to be a real-time process because of the need to implement zero-phase 
filters.  If the current SB filter were implemented in a real-time meteorological system, the BP filter structure 
would be linear phase with a minimum time delay of about 36 hours, based on this dual 8th-order IIR filter.  In 
other words, based on current wind direction data, the result of the SB filter is to estimate the SB transition time 
no more recently than the previous day. 

The signal processing strategy behind the SB transition time filter is summarized by Figure 4.  The BP filter 
provides a SB transition time predictor, which is compared to the LP filtered wind direction signal at every spatial 
grid point.  If the time difference between the predicted BP-SB time and the LP-SB time exceeds 6 hours, no SB 
for that day is assumed.   
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Figure 4. The sea breeze filter signal processing block diagram. 
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Every grid point in the observed and forecast data is processed using the SB filter technique of Figure 4.  
Recombining processed time domain data into spatial images results in two-dimensional grids of SB transition 
times.  These grids of observed and forecast SB transition times were converted into the General Meteorological 
Package visualization and display software for analysis and presentation purposes.   

Table 2 shows sample output using 5-min data for the month of July 2000 at grid location x = 55, y = 42.  
Note that the SB filter algorithm fills in missing data by performing a linear interpolation between end points 
around the missing data before the LP and BP sections.  Figure 5 displays the corresponding filter outputs for the 
last eight days of the month, corresponding to the entries in Table 2.  The raw data plotted in Figure 5 is the sine 
of the wind direction φ.  In general, sinφ would be replaced by sin(φ - φ0), where φ0  is the offset from true north 
(0°) as a result of the local orientation of the coastline (i.e. 335−155°).  In this report, φ0 = 0. 

Table 3 shows for comparison a grid point with a separation in the x direction of 5 km (westward) and a 
separation in the y direction of 8.75 km (southward) from the grid point data used in Table 2.  Figure 6 displays 
the corresponding filter outputs for the last eight days of the month, corresponding to the entries in Table 3.  As 
can be seen, there is a strong correlation in the time domain signals by comparing Figures 5 and 6. 

 

 

 
Figure 5. Results of SB filter from Figure 4, applied to wind direction data from 24−31 July 2000.  Red sticks 
indicate the estimated SB transition times derived from the IIR BP filter (BPF) and LP filter. 
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Table 2.  Filter output showing the SB code* and SB transition time (if any) for 
observed data from July 2000 at grid coordinate x = 55, y = 42.  The SB transition 
times are given in units of UTC days of the month and local daylight time (LDT).  
Note that SB transition times are determined based on a changeover from offshore 
(> 180° wind direction) to onshore (< 180° wind direction). 

Day SB Code Transition Time (UTC days) Transition Time (LDT) 
1  1 1.632 1110 
2  1 2.477 0725 
3 -2   
4 -2   
5 -4   
6  1 6.749 1355 
7 -2   
8  1 8.675 1210 
9 -2   

10 -2   
11  1 11.614 1045 
12  1 12.705 1255 
13 -2   
14 -4   
15 -2   
16 -2   
17 -2   
18 -4   
19  1 19.549 0910 
20 -2   
21  1 21.730 1330 
22  1 22.730 1330 
23  1 23.682 1220 
24  1 24.678 1215 
25  1 25.552 0915 
26  1 26.616 1050 
27  1 27.540 0900 
28  1 28.574 0945 
29  1 29.558 0925 
30  1 30.503 0805 
31 -4   

*SB Code:  1 = SB transition occurrence. 
   -1 = Land breeze transition occurrence (not implemented). 
   -2 = No SB transition detected in low pass (LP) filtered signal. 
   -3 = Multiple SB transitions detected in band pass (BP) filtered signal. 
   -4 = SB time difference in LP and BP exceeds 6 hours. 
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Table 3.  Filter output showing the SB code* and SB transition time (if any) for 
observed data from July 2000 at grid coordinate x = 51, y = 35.  The SB transition 
times are given in units of UTC days of the month and local daylight time (LDT).  
Note that SB transition times are determined based on a changeover from offshore 
(> 180° wind direction) to onshore (< 180° wind direction). 

Day SB Code Transition Time (UTC days) Transition Time (LDT) 
1  1 1.647 1130 
2  1 2.462 0705 
3 -2   
4 -2   
5  1 5.591 1010 
6  1 6.743 1350 
7 -2   
8  1 8.672 1205 
9 -2   

10 -2   
11  1 11.629 1105 
12  1 12.728 1330 
13  1 13.831 1555 
14 -4   
15 -2   
16 -2   
17 -2   
18 -4   
19  1 19.567 0935 
20 -4   
21  1 21.798 1510 
22  1 22.761 1415 
23  1 23.712 1305 
24  1 24.696 1240 
25  1 25.561 0925 
26  1 26.631 1110 
27  1 27.561 0925 
28  1 28.571 0940 
29  1 29.564 0930 
30  1 30.500 0800 
31 -4   

*SB Code:  1 = SB transition occurrence. 
   -1 = Land breeze transition occurrence (not implemented). 
   -2 = No SB transition detected in low pass (LP) filtered signal. 
   -3 = Multiple SB transitions detected in band pass (BP) filtered signal. 
   -4 = SB time difference in LP and BP exceeds 6 hours. 
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Figure 6. Results of SB filter from Figure 4, applied to wind direction data from 24−31 July 2000.  Red sticks 
indicate the estimated SB transition times derived from the IIR BP filter (BPF) and LP filter. 

 

3.3 Sample Output from 18 July 2000 

This sub-section presents sample CEM output from 18 July 2000, illustrating a day with a typical SB passage 
in both the observed and forecast wind fields.  Figure 7 depicts an hourly sequence of the observed 54-ft wind 
field on 18 July from 1600 to 1900 UTC.  Northwesterly winds are prevalent across much of the domain at 1600 
UTC, with only a small portion of the grid near the coast experiencing onshore winds from the northeast 
(indicated by shading in Fig. 7a).  By 1700 UTC, east-northeast winds have advanced inland along the entire 
eastern portion of the domain (Fig. 7b).  Over the next two hours, the SB transition zone moved through much of 
the remainder of the domain with east-northeast winds prevailing behind the front (Figs. 7c-d).   

The RAMS forecast wind fields interpolated to 54 ft (Fig. 8) are quite similar to the hourly observed winds.  
At 1600 UTC, only a slight shift to an easterly component occurred along the extreme eastern portion of the grid 
domain (Fig. 8a).  Over the next three hours (Figs. 8b-d), the RAMS SB wind shift advanced inland at a very 
similar rate and orientation compared to the observed winds (Figs. 7b-d).   

The CEM output at each grid point provides a basis for isochrones of the SB transition zone shown in Figures 
9a and 9b.  The RAMS isochrones of SB transition time (Fig. 9a) illustrates the steady west-southwestward 
progress of the SB front from about 1600 UTC to after 1900 UTC.  The observed isochrone pattern in Figure 9b is 
quite similar with only slight deviations from the forecast pattern.  Following the traditional meteorological 
convention in NWP model verification, the observed field is subtracted from the RAMS forecast field of SB 
transition times (Forecast − Observed), yielding the difference field of SB transition times in Figure 9c.  Most of 
the SB transition time differences are less than 0.5 hours in magnitude with little indication of a systematic error 
across the verification domain.   
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Figure 7. Hourly sequence of objectively analyzed tower winds at 54 ft, valid on 18 July 2000 at (a) 
1600 UTC, (b) 1700 UTC, (c) 1800 UTC, and (d) 1900 UTC.  Shading denotes areas with wind 
directions between 0° and 180° (i.e. onshore).   
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Figure 8. Hourly sequence of objectively analyzed RAMS forecast winds (interpolated to 54 ft) from 
the 1.25-km grid, initialized at 1200 UTC 18 July.  Valid times from 18 July 2000 are (a) 1600 UTC (4-h 
forecast), (b) 1700 UTC (5-h forecast), (c) 1800 UTC (6-h forecast), and (d) 1900 UTC (7-h forecast).    
Shading denotes areas with wind directions between 0° and 180° (i.e. onshore).   
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Figure 9. Sample output of the CEM algorithm for 18 July 2000.  (a) RAMS forecast transition 
times, (b) Observed transition times, and (c) The difference in the transition times. 

 

3.4 Image Erosion to Suppress Contamination by River Breezes 

Image erosion is a common processing technique used to shrink an image object in some predictable way 
(Gonzalez and Woods 1992).  Image erosion was used to suppress the river breeze part of the SB transition time 
images, using the gradient of the transition times to trigger the erosion process, as described in this section.  The 
river breeze can often develop in advance of the actual SB transition, and move from west to east (from the Indian 
River to KSC/CCAFS), opposite of the direction of the SB.   
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The inverse of the gradient of the SB transition time is proportional to the sea-breeze boundary velocity, as 
depicted by Equation (2): 

2),(
),(),(

yxt
yxtyxv

SB

SB

∇

∇
=v           (2) 

where ),( yxtSB  is the SB transition time.  Even though Equation (2) describes a quantitative method of computing 
the SB boundary velocity, the gradient of ),( yxtSB  is a more useful quantity.  If the east to west direction is taken 

as positive, then a positive value of [ ]
x

ttyxt SB
SBxxSB ∂

∂
=∇=∇ ),(  indicates a SB boundary propagating from east to 

west.  Figure 10 illustrates such a positive SB transition and the proportionality to the propagation velocity from 
12 July.  Note that the gradient of the SB transition is proportional to the inverse of the SB boundary propagation 
velocity, as denoted in Figures 10b and 10d. 

(a) (c)(a) (c)
 

(b) (d)(b) (d)
 

Figure 10. Sea-breeze transition times for 12 July 2000.  (a) Surface plot using observed tower data, (b) Three-
dimensional plot using observed data, (c) Surface plot using RAMS forecast data, and (d) Three-dimensional plot 
using RAMS forecast data.   
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However, 0<∇ SBxt  indicates a west to east propagation of the wind direction boundary.  Since the SB time 
estimation filter suppresses most effects of outflow boundaries (convective rainfall), a negative SBxt∇  is most 
likely indicative of a river breeze pushing the SB boundary backward.  Therefore, a negative gradient of the SB 
transition time 

SBxt∇  is a strong indicator of river breeze effects.  This characteristic was used to eliminate the 
river breeze contaminated portions of the CEM difference images, and isolate the SB transition times only.  By 
scanning east to west, if a negative gradient was detected (i.e. a boundary moving west to east, which cannot 
physically be a SB transition), then all SB times to the west of that point were re-coded as no SB.  This simple 
technique resulted in a reasonable suppression of river-breeze phenomenon which contaminated the primary SB 
boundary propagation.  Figure 11 shows an example map of the SB transition times from 18 August 2000, before 
and after image erosion. 

 

 

   
Figure 11. Erosion based on the gradient of the SB transition time of the observed wind field on 18 August 
2000: (a) Before erosion, and (b) after erosion.  



 17

4. Algorithm Validation and Results 

This section presents the validation of the CEM algorithm and the RAMS verification results as generated by 
CEM.  An interpretation of the CEM output is also provided to explain the significance of the objective 
verification parameters. 

4.1 Validation of CEM 

Tables 4 and 5 summarize the results of the Gaussian fit parameters of CEM for July and August 2000, as 
well as present the subjectively determined SB transition time for the observed and forecast wind fields.  The 
subjective SB transition times were determined by examining animations of 5-minute observed and RAMS 
forecast wind fields across KSC/CCAFS, similar to Figures 7 and 8.  The range of SB transition times were 
identified based on the presence and continuity of a landward-propagating wind-shift line in the two-dimensional 
wind field, as interpreted by an experienced meteorologist.   

Additional archived data sources such as radar and satellite observations were also examined for each day to 
ensure that no precipitation outflow boundaries caused the landward-moving wind-shift line.  The beginning and 
end times of the SB transition time ranges were recorded based on the first and last appearance of the landward-
moving wind shift within the tower analysis domain.  The presence of precipitation outflow boundaries and river 
breezes in the observed and forecast wind fields were noted during the analysis. 

The CEM technique performed quite well when compared to these subjective meteorological assessments of 
the SB transition times.  The algorithm correctly identified a forecast or observed SB occurrence or absence 93% 
of the time during the two-month evaluation period from July and August 2000.  Given the 104 possible validation 
events (52 days with non-missing data for both observed and forecast data), there were 97 successes and only 7 
failures in identifying the correct SB occurrence or absence.  All failures and their explanations are indicated by a 
footnote in either the fO or fR column of Tables 4 and 5.  Six of the 7 failures were caused by precipitation outflow 
boundaries that generated easterly flow, resulting in a false identification of a SB occurrence (July 7, 15, 16, 30, 
and August 22).  The only CEM missed identification of a SB occurrence is found on July 17, when the observed 
SB transition briefly affected only the extreme eastern portion of the verification domain.   

The CEM could be improved to recognize areas of precipitation by incorporating additional data sources such 
as radar reflectivity and model-predicted rainfall rates.  Image processing techniques could be used to denote areas 
of observed or forecast precipitation in relation to the transition times identified by CEM.  The incorporation of 
these additional data sources is beyond the scope of the current effort; however, CEM could be improved by 
introducing more sophistication to account for wind transition zones associated with precipitation features.   

A qualitative comparison between the CEM timing errors and the subjectively determined observed and 
forecast transition times indicate that the algorithm performed very well overall.  In most instances, the mean SB 
transition time bias (τ ) is comparable to the difference between the subjectively determined RAMS and observed 
transition times (Forecast − Observed).  However, differences could occur due to the specific positioning and 
orientation of the observed versus forecast SB transition zone, which cannot be adequately depicted by the 
subjectively determined time ranges.   

Most substantial discrepancies between the CEM bias results and the subjective time ranges were again 
caused by observed or forecast areas of precipitation that led to complex wind patterns not handled well by CEM.  
Out of the 35 days correctly identified by CEM for comparison between observed and forecast SB transition 
times, only 4 days had substantial discrepancies between the subjectively determined RAMS and observed sea 
breeze times and the CEM bias (τ ): July 13 and 26, and August 2 and 6.  Once again, 3 out of 4 of these 
discrepancies were caused by either observed or forecast precipitation outflow that contaminated the wind fields.  
The fourth discrepancy (2 August) was caused by prevailing onshore flow in RAMS near the initialization time, 
which led to a prematurely early identification of the SB transition time in the model and thus, an erroneously 
large early (negative) bias.   
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Table 4.  Gaussian fit parameters for eroded CEM histograms and subjectively-determined range of 
observed and RAMS times of the SB transition (in UTC) for July 2000.  The parameters shown are the mean 
SB transition time bias (τ ), the standard deviation of the SB transition differences (σ ), the fractional area of the 
domain with only an observed SB transition (fO), and the fractional area of the domain with only a RAMS 
forecast SB transition (fR).  Erroneous identifications of a SB occurrence/absence and inconsistent biases are 
indicated by shaded cells, along with a footnote explaining the reason(s) for the discrepancy. 

Day τ (hours) σ (hours) fO fR Observed 
SB Times 

RAMS 
SB Times 

2   0 0 None None 
3   0 0 None None 
4   0 0 None None 
5 -0.01 1.47 0.69 0.21 1300-1600 1330-1500 
6 -0.90 0.54 0.16 0.07 1715-2145 1700-1830 
7   0 1A None None 
8 -0.93 0.22 0.01 0.03 1545-1645 1430-1600 
9   0 0 None None 

10   0 0 None None 
11 0.22 0.48 0.02 0.38 1430-1700 1525-1700 
12 -0.31 0.46 0.21 0.10 1600-2015 1700-1830 
13 -2.44 0.05 0 0.97 1715-1815B 1710-2145 
14   0 1 None 1700-2355 
15   0 1A None None 
16   0 1A None None 
17   0C 0 2045-2215C None 
18 -0.12 0.35 0.01 0 1600-1900 1600-1930 
19 0.29 0.28 0.32 0.03 1330-1500 1330-1600 
20 -3.61 0.65 0.23 0.14 1740-2355 1515-1745 
21 -1.69 0.45 0.05 0.42 1630-2030 1530-1930 
22 -1.16 0.55 0.09 0.50 1645-1900 1615-2000 
23 -1.09 0.39 0.05 0.18 1545-1800 1500-1945 
24 -0.69 1.04 0.13 0.27 1430-1730 1430-1915 
25 -2.08 1.24 0.52 0.06 1430-1745 1400-1515 
26 -0.51 1.86 0.42 0.24 1515-1845 1345-1500D 
27 -1.23 0.30 0.87 0 1315-1650 1330-1530 
28 -0.94 0.23 0.09 0.40 1330-1530 1300-1400 
29 -0.69 0.42 0.14 0.01 1315-1600 1330-1500 
30 -0.02 0.21 0.30A 0.05A None None 

ACEM falsely identified a model SB due to precipitation outflow with an easterly wind component. 
BThe observed SB ended prematurely due to precipitation outflow. 
CThe observed SB occurred only at the extreme eastern tip of the grid domain under strong westerly flow. 
DThe RAMS SB times ended prematurely due to contamination from forecast precipitation outflow. 
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Table 5.  Gaussian fit parameters for eroded CEM histograms, and subjectively-determined range of 
observed and RAMS times of the SB transition (in UTC) for August 2000.  The parameters shown are the 
mean SB transition time bias (τ ), the standard deviation of the SB transition differences (σ ), the fractional 
area of the domain with only an observed SB transition (fO), and the fractional area of the domain with only a 
RAMS forecast SB transition (fR). 

Day τ (hours) σ (hours) fO fR Observed 
SB Times 

RAMS 
SB Times 

2 -3.63A 0.29 0.37 0 1430-1530 1400-1600 
3 -0.49 0.46 0.20 0.42 1345-1445 1300-1415 
4 -0.12 0.96 0.16 0.56 1500-1700 1510-1700 
5 -1.99 0.75 0.13 0.07 1715-1900 1515-1740 
6 1.36 0.74 0.17 0.30 1330-1600 1330-1500B 
7   1 0 1330-1430 None 
8     1300-1400 Missing Data 
9 -0.05 0.23 0.17 0.03 1300-1500 1330-1550 

10 -0.13 0.67 0.06 0.48 1515-1800 1500-1820 
11     1730-1900 Missing Data 
12     None Missing Data 
13     None Missing Data 
14     None Missing Data 
15     1445-1730 Missing Data 
16 0.74 0.42 0.19 0.19 1300-1500 1330-1600 
17 1.25 0.56 0.54 0.16 1300-1600 1330-1630 
18 0.38 0.29 0.10 0.04 1415-1530 1400-1610 
19 0.17 0.50 0.15 0.25 1530-1645 1530-1700 
20 -0.15 0.43 0.14 0.16 1500-1630 1500-1700 
21 -0.12 0.18 0.05 0.06 1400-1515 1345-1530 
22   1C 0 None None 
23   0 0 None None 
24   0 0 None None 
25 -0.68 0.61 0.04 0.30 1500-1730 1400-1700 
26 -0.72 0.56 0.21 0.12 1400-1715 1400-1520 
27   1 0 1315-1500 None 
28 -1.76 0.35 0.08 0.24 1400-1730 1400-1515 
29 -4.82 0.21 0.14 0.23 1800-2030 1400-1500 
30 -2.04 0.49 0.50 0 1700-2230 1515-1930 

AModel flow was slightly onshore at model initialization time, thus identifying the forecast SB too early. 
BThe RAMS SB times ended prematurely due to contamination from forecast precipitation outflow. 
CPrecipitation outflow caused easterly flow that triggered a false identification of an observed SB. 
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4.2 Interpreting Objective Model Verification Results 

Tables 4 and 5 summarize the Gaussian fit parameter statistics for each day during July and August 2000 with 
both an observed and forecast SB.  Zeros in the same row under both fO  and fR in Tables 4 and 5 indicate that 
neither a forecast nor observed SB occurred on that day (representing a forecast success).  Blank rows indicate 
that forecast and/or observed data were missing for that day.  A complete forecast miss or false prediction of a SB 
on a particular day is represented by a value of unity for fO (forecast failure) or fR (false alarm prediction).   

The days with the best model skill in predicting the SB occurrence and timing are those with the smallest 
absolute values of the mean bias (τ ) and the smallest standard deviation of the bias (σ).  Days that have a larger 
absolute value of τ  indicate the greatest systematic timing errors in RAMS.  Note that an average early bias in the 
onset of the SB transition on a particular day is given by a negative τ, whereas a positive τ  indicates a late bias in 
the onset of the SB transition.   

The standard deviation (σ) denotes the amount of variation in the SB transition time error across the 
KSC/CCAFS grid domain.  If the overall timing bias τ  is small, the RAMS SB forecast could still be in 
substantial error over portions of the domain due to a large σ.  In these instances, a large σ combined with a nearly 
unbiased τ  would indicate that the RAMS forecast SB had a phase error or did not propagate in the correct 
manner.  For example, the forecast SB could start too late along the coastal regions and then propagate too quickly 
across KSC/CCAFS reaching the western portion of the domain too early.  Such a scenario would yield a nearly 
unbiased domain-wide timing error τ , but would also yield a relatively large σ, due to the variation of the timing 
errors across the domain.   

Based on the results of CEM in Tables 4 and 5, RAMS tended to predict the onset and movement of the SB 
transition too early and/or quickly.  The domain-wide timing biases provided by CEM indicated an early bias on 
30 out of 37 days when both an observed and forecast sea breeze occurred over the same portions of the analysis 
domain.  These results are fairly consistent with a previous subjective verification of the RAMS sea breeze 
predictions conducted during the same time of year (Case et al. 2002).  In the Case et al. (2002) subjective 
verification, 12 towers were selected and examined daily for SB transitions during the 1999 and 2000 summer 
months.  They found that RAMS had about a 0.3 h early (negative) timing bias in the SB onset at those 12 selected 
towers.  However, these results cannot be directly compared to the CEM results since the current study takes into 
account all available KSC/CCAFS towers, and only compares the SB times during July and August 2000.   

To summarize, the CEM results are more valuable than the subjective evaluation results for two reasons: 

• All available observational and RAMS point forecast data are utilized in the verification, and 

• CEM is fully automated, saving considerable manpower compared to a subjective analysis. 
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4.3 Mean Post-Sea Breeze Wind Comparisons 

Using eroded SB transition times, the average of wind speed and direction for all days with detected SB 
passage during July and August 2000 are shown in Figure 12.  Comparing the observed to forecast data, it can be 
seen that the post-SB wind direction is better predicted by RAMS than the post-SB wind speeds.  The overall 
wind-speed bias for all valid days shown in Figure 8 is 2.0 m s-1 with an error standard deviation of 1.2 m s-1.  Out 
of the 38 events shown in Figures 8a-b, all days experienced stronger post-SB winds in the model compared to 
observations.  Meanwhile for wind direction, the overall bias is only 9° with an error standard deviation of 26°, 
indicating that the post-SB forecast wind direction is relatively unbiased.   

It is important to note that out of the 37 SB events with comparison Gaussian statistics in Tables 4 and 5, 30 
of these events had a negative τ, or early timing biases in RAMS.  An early model timing bias in the SB transition 
could be caused by a number of factors in the model; however, in all SB events, RAMS over-predicted the 
strength of the post-SB wind speeds (Figures 12a-b).  Therefore, it appears that some aspect of RAMS leads to a 
consistent over-prediction of the wind speeds behind the SB front, often resulting in an early bias in the onset time 
of the SB. 
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Figure 12. Mean post-SB winds based on eroded SB transition times: (a) Mean wind speeds for July 2000, (b) 
Mean wind speed for August 2000, (c) Mean wind direction for July 2000, and (d) Mean wind direction for 
August 2000. 
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5. Summary 

This report presented the CEM objective technique to verify RAMS predictions of the SB phenomenon over 
east-central Florida.  The CEM technique identifies SB transition times in objectively-analyzed grids of observed 
and forecast wind, verifies the RAMS SB transition times against the observed times, and computes the mean 
post-sea breeze wind direction and speed to compare the observed and forecast winds behind the SB front.   

The CEM technique is superior to traditional objective verification techniques and previously-used subjective 
verification methodologies because: 

• It is automated, requiring little manual intervention, 

• It accounts for both spatial and temporal scales and variations, 

• It accurately identifies and verifies the sea-breeze transition times, and  

• It provides verification contour maps and simple statistical parameters for easy interpretation. 

The CEM uses a parallel lowpass boxcar filter and a high-order bandpass filter to identify the SB transition 
times in the observed and RAMS grid points.  Once the transition times are identified, CEM fits a Gaussian 
histogram function to the actual histogram of transition time differences between the model and observations.  The 
fitted parameters of the Gaussian function subsequently explain the timing bias and variance of the timing 
differences across the valid comparison domain.  Once the transition times are all identified at each grid point, the 
CEM then computes the mean wind direction and speed during the remainder of the day for all times and grid 
points after the SB transition time.  The mean post-SB RAMS winds were then compared to the mean post-SB 
observed winds. 

The CEM technique performed quite well when compared to a subjective assessments of the SB transition 
times.  The algorithm correctly identified a forecast or observed SB occurrence or absence 93% of the time during 
the two-month evaluation period.  Nearly all failures in CEM were the result of complex precipitation features 
(observed or forecast) that contaminated the wind field, resulting in a false identification of a SB transition.   

A qualitative comparison between the CEM timing errors and the subjectively determined observed and 
forecast transition times indicates that the algorithm performed very well overall.  Most discrepancies between the 
CEM results and the subjective analysis were again caused by observed or forecast areas of precipitation that led 
to a contaminated SB signal.  The CEM also failed on a day when the observed SB transition affected only a very 
small portion of the verification domain. 

Based on the results of CEM, the RAMS tended to predict the onset and movement of the sea-breeze 
transition too early and/or quickly.  The domain-wide timing biases provided by CEM indicated an early bias on 
30 out of 37 days when both an observed and forecast SB occurred over the same portions of the analysis domain.  
A comparison of the mean post-SB winds indicate that RAMS has a positive wind-speed bias for all days, 
consistent with the early bias in the SB transition time. 

Objective error statistics for specific meteorological phenomena, such as those developed in this project for 
the SB, can provide forecasters and model developers with an important tool in diagnosing model biases or errors.  
The potential savings in time and resources, combined with the knowledge gained from such an evaluation could 
prove invaluable for future development of mesoscale NWP models. 
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Appendix A: Gradient Search Method to Fit Gaussian Probability Function 
A histogram hk of difference times can be generated from a CEM spatial plot.  The sample histogram of 

Figure A1 is generated by summing the number of occurrences of times corresponding to the kth time difference, 
using all pixels in the image which have a defined CEM difference time. 
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Figure A1. Sample CEM histogram showing Gaussian fit from equation (A1). 

 
 

The histogram  hk  can be approximated by a Gaussian probability function )(ˆˆ
kk thh ≡ , where tktk ∆≡ : 

22 2/)( 
2

1ˆ στ

πσ
−−∆

−−
= ktRO

k etffh         (A1) 

Equation (A1) is plotted in Figure A1 using a “best fit” set of values for τ  and σ.  A method to find a best fit 
set of values is based on the gradient search algorithm. 

The gradient search method starts by specifying the total error defined by the sum of the squares of 
differences between calculated and actual values of the histogram, summed over all k points:  

( )
2

1

ˆ∑
=

−=
N

k
kk hhE .          (A2) 

In the particular case of CEM histograms used in this study, the total number of points N is equal to 288, the 
number of 5 min (∆t) intervals in a 24-h period.  The next step in the gradient search method is to set the gradient 
of the total error, from Equation (A2), to zero: 
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 0=∇E .          (A3) 

The gradient of E can be written as: 

( )   ˆ2
1

∑
=

−−=∇
N

k
kkk hhE α
r

,        (A4) 

where 

     ˆ     
k

kk h 







=

















∂
∂

∂
∂

=
σ

τ

α
α

σ

ταv ,        (A5) 

22 2/)(
3

 )(
2

)1( στ
τ τ

πσ
α −−∆−

−−
= tRO ettff , and     (A6) 

22 2/)(22
4

 ])(2[
2

)1( στ
σ στ

πσ
α −−∆−−

−−
= tRO ettff

.     (A7) 

The parameter vector, P
v

 whose components are the Gaussian variables, τ  and σ : 









=

σ
τ

P
v

,          (A8) 

are found using an iterative process described by the following formula 

EnPnP ∇−=+ µ)()1(
vv

.         (A9) 

The convergent constant µ is determined empirically.  If µ  is too small, convergence will require an 
unreasonably large number of iterations of Equation (A9).  If µ  is too large, Equation (A9) will diverge, usually 
towards infinity, or oscillate wildly around the solution.  In this study, a value of  0.1 < µ < 1 seemed to produce 
satisfactory results. 
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Appendix B: Band Pass Filter Details 
As shown in Figure B1 and B2, a digital Nth order bandpass filter can be implemented by cascading the 

second order network, where the second order transfer function for each of the M cascaded sections is expressed 
as: 
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Figure B1. Cascaded Nth order IIR bandpass filter network. 
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Figure B2. Single second order section of cascaded bandpass filter network. 
 

The total transfer function H(z) is the product of the  M  cascaded sections, where the filter order N = 2M: 

 )(  )( )()( 21 zHzHzHzH ML= .       (B2a) 

Instead of a product of M sections as described above, the network can be expressed as M/2 pairs of cascaded 
sections: 
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The number of product terms in Equation (B2b) is still M, but now each pair of  j = 1, 2 products correspond 
to a  k = 1, 2, … M/2 grouping.  The reason for this organization of H(z) may be more obvious by examining 
Figure B2:  j = 1 corresponds to a second order bandpass filter  whose center frequency is below f0, while j = 2 
corresponds to a bandpass whose center frequency is above f0.  Each pair of k sections has a gain value different 
than one, which is shared by both the j =1 and j = 2 sections.  This arrangement leads to a maximally flat bandpass 
design (also known as the Butterworth design). 

 

 

Figure B3. Gain response of 8th Order (M=4) Butterworth bandpass 
filter, showing equivalent gain response of each individual second 
order section for f0=300 Hz and Q=0.33 (top), and Q=1.0 (bottom).  
The solid line is total H(z), the dotted line is H11(z), the dashed line is 
H21(z), the thin dotted line is H12(z), and the thin dashed line is H22(z). 

 

The coefficients αjk, βjk, and γjk in Equation (B2b) are directly related to the filter Q and center frequency f0 of 
the total network.  However, unlike the coefficient formulas of the lowpass and highpass cascaded Butterworth 
filters, the cascaded bandpass coefficient formulas are somewhat elaborate: 
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where 

ss ffff / 2/ 2 00 πθπθ ≡≡ .       (B14) 

Figure B4 shows the cascaded bandpass gain and phase response for a 4th order (M = 2) bandpass 
Butterworth filter with fs = 11025 Hz and Q = 0.25 for f0 = 30 Hz (solid line); f0 = 100 Hz (thin solid line); f0 = 300 
Hz (dashed line); and f0 = 1000 Hz (dotted line).  Figure B5 is identical to Figure B4, but with N = 12 (M = 6) and 
Q = 1. 
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Figure B4. Gain (top panel) and phase response (bottom panel) of digital 4th 
order (M=2) bandpass Butterworth filter with fs = 11025 Hz and Q = 0.25.  
Plots are shown for f0 = 30 Hz (solid line), f0 = 100 Hz (thin solid line), f0 = 300 
Hz (dashed line), and f0 = 1000 Hz (dotted line). 
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Figure B5. Gain (top panel) and phase response (bottom panel) of digital 
12th order (M=6) bandpass Butterworth filter with fs = 11025 Hz and Q = 1.  
Plots are shown for f0 = 30 Hz (solid line), f0 = 100 Hz (thin solid line), f0 = 
300 Hz (dashed line), and f0 = 1000 Hz (dotted line). 

 

Figures B4 and B5 were generated using the transfer function H(z) from Equation (B2b) and the coefficient 
formulas of Equations (B3) − (B14).  The gain and phase are computed directly from the magnitude and argument 
of H(z) by setting  sfifez /2π= : 
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The steepness of the magnitude response increases with the order of the filter, and approaches a straight line 
on a log-log plot (or power-law on a linear-linear plot): 
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Equation (B16) corresponds to the familiar Nth order bandpass filter stopband response approximation of -3N 
dB/octave or -10N dB/decade, when f  is much less than or much greater than the center frequency, as well as 
much less than the Nyquist frequency.  As f approaches the Nyquist frequency, the filter roll-off steepness 
increases and the gain becomes exactly zero when  f = fn .  In some ways, this characteristic of the digital bandpass 
filter (also true with the lowpass filters) gives an extra boost of stopband suppression as compared to the 
equivalent analog filter.  

Since by convention, as in the analog case of the previous section, a phase angle is defined to be in the range 
of –180° to +180°, Equation (B16) should be modified to reflect this convention 
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The gain and phase at the center frequency for all N is 
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The quality factor Q  is inversely proportional to the frequency bandwidth  ∆f  of the gain response curve 
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where ∆f = f2 – f1  and ∆θ = θ2 –θ1 .  The normalized center frequency  θ0  is related to the normalized edge 
frequencies  θ1  and  θ2  by 

( ) ( ) ( )2/tan2/tan2/tan 210 θθθ = ,        (B20) 

where sff /2 00 πθ = , sff /2 11 πθ = , and sff /2 22 πθ = . 

The edge frequencies  f1  and  f2  are computed using an iterative method.  Figure B6 shows the gain response 
of several Nth order Butterworth bandpass filters with Q = 0.33, f0 = 300, and fs = 11025 Hz.  Using Equations 
(B21a) and (B21b), the edge frequencies are computed for this case using several values of filter order N = 2M.  
Note that in all cases, the response curves intersect at a common point corresponding to the -3 dB gain (or gain = 
2−1/2), at the edge frequencies  f1  and  f2. 
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Figure B6. Gain response of 2nd, 4th, 8th, and 16th order Butterworth bandpass filters with Q = 
0.33, f0 = 300, and fs = 11025 Hz. 

As with the second order bandpass filter, the Q has a finite limit on the low end, as shown in Equation B22.  
There is no theoretical upper limit on Q, with the second order IIR bandpass filter; however, issues concerning 
roundoff errors and other problems with finite size numbers generally lead to a practical upper limit on Q.  

nffQ /0> .          (B22) 
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List of Abbreviations and Acronyms 
Term    Description 
AMU    Applied Meteorology Unit 
BP     Bandpass 
CCAFS    Cape Canaveral Air Force Station 
CEM    Contour Error Method 
FIR     Finite Impulse Response 
IIR     Infinite Impulse Response 
ISAN    Isentropic Analysis 
KSC    Kennedy Space Center 
LDT    Local Daylight Time 
LP     Lowpass 
LSBO    Land Sea Breeze Oscillation 
METAR    Aviation Routine Weather Report 
MHz    Mega-Hertz 
MM5    Mesoscale Model version 5 
NCAR    National Center for Atmospheric Research 
NCEP    National Centers for Environmental Prediction 
NWP    Numerical Weather Prediction 
RAMS    Regional Atmospheric Modeling System 
SB     Sea Breeze 
UTC    Universal Time Coordinated 
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