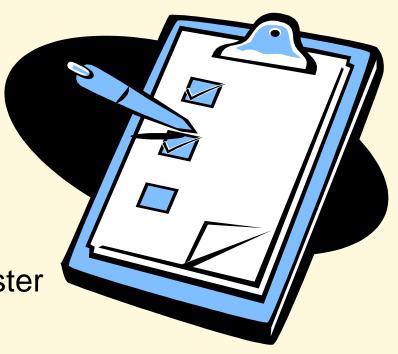


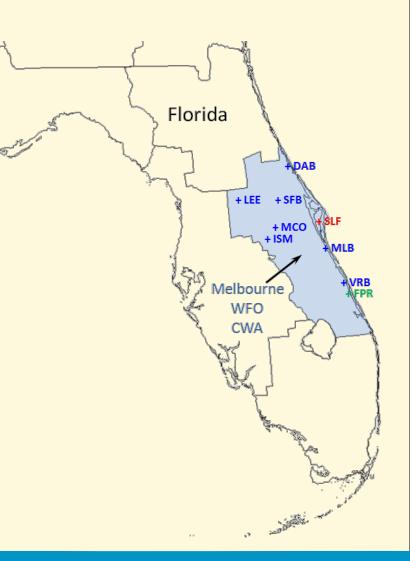
Flow Regime Based Climatologies of Lightning Probabilities for Spaceports and Airports

William H. Bauman III,
ENSCO, Inc./Applied Meteorology Unit
Matthew Volkmer, David Sharp, and Scott Spratt
National Weather Service, Melbourne, FL
Richard A. Lafosse
Spaceflight Meteorology Group, Houston, TX



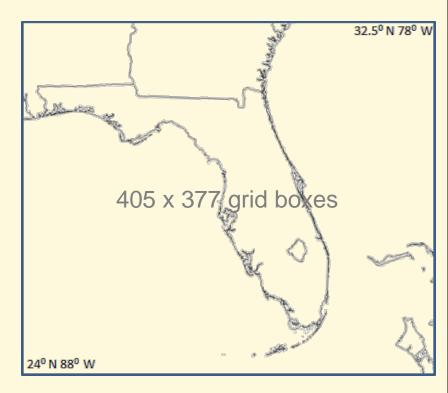
Outline

- Project objectives
- Data and period of record
- Flow regime definitions
- Issues
- Problems
- Solutions
- Taming the data for the forecaster
- Summary



Project Objectives

- Provide forecasters with a warm season climatological probability of one or more lightning strikes within a circle at a site within a specified time interval
- Create climatologies based on Florida flow regimes for TAFs and shuttle landings for:
 - 9 sites
 - 5-, 10-, 20-, and 30-n mi circles around the sites
 - 1-, 3-, and 6-hour increments
- Develop an easy to use GUI to display data

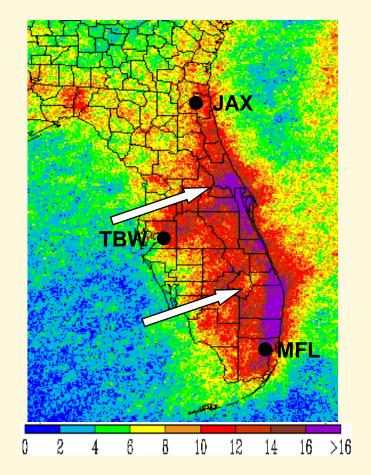


Data and Period of Record (POR)

- NWS in Tallahassee provided NLDN gridded data of cloud-toground (CG) lightning strikes
 - Spatial resolution: 2.5 X 2.5 km
 - Temporal resolution: 1 hour
- Warm season months:
 - May Sep
 - 16-year period
 - **1989–2004**

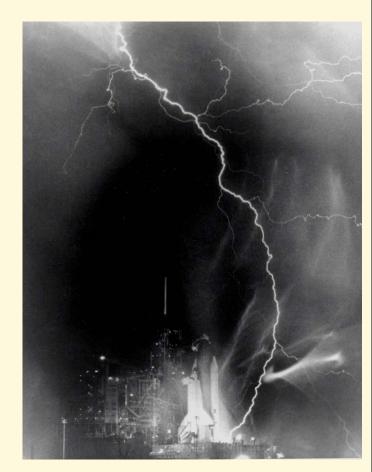
Flow Regime Definitions

- Florida State University (FSU) identified large-scale flow regimes over Florida
 - Found strong relationship between regimes and spatial distribution of CG lightning
 - Average wind directions in 1000 – 700 mb layer from the 1200 UTC soundings Miami (MFL), Tampa (TBW), and Jacksonville (JAX)
 - Studies yielded 7 distinct flow regimes


Flow Regime Name	Definition	Days in Regime
SW-1	Ridge from Atlantic High South of MFL	271
SW-2	Ridge from Atlantic High North of MFL and South of TBW	241
SE-1	Ridge from Atlantic High North of TBW and South of JAX	309
SE-2	Ridge from Atlantic High North of JAX	225
NE	Overall Northeast Flow	174
PAN	Ridge from Central Gulf Coast High over Panhandle	109
NW	Overall Northwest Flow	94
Other	Undefined Regime	827

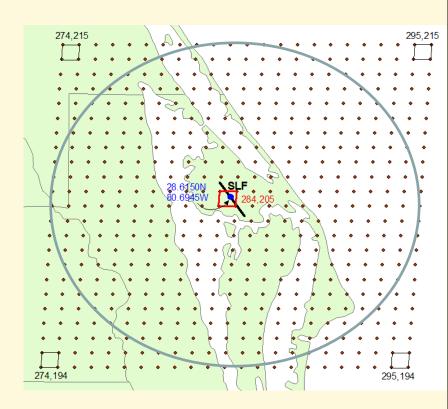
Flow Regime Definitions - Example

- Southwest (SW-1)
 - Atlantic high pressure ridge south of MFL
 - 1000-700 mb layer average wind direction is from the southwest across peninsula
 - CG lightning maximum along the east coast of Florida


24-hour CG Probability for Southwest Flow (Stroupe 2003)

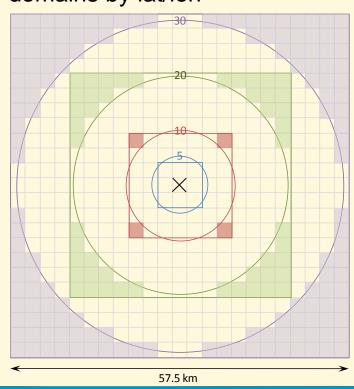
Issues

- Needed to know:
 - Number of CG strikes in given period of time and distance from site
- Had to work with:
 - Code provided by FSU to read NLDN data in gridded format
- Needed to generate:
 - 1-, 3-, and 6-hourly grids for each day and each flow regime
 - 5-, 10-, 20- and 30- n mi circles for each site and each flow regime



Problems

- Data
 - Gridded format not individual CG's
- Code designed for:
 - 24 hr intervals
 - Entire (rectangular) domain (343,000 n mi²)
 - Not lat/lon based

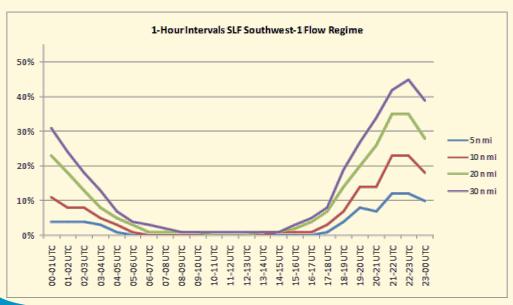


Solutions

- Data
 - No change
- Changed code
 - Multiple time intervals and smaller, multiple domains by lat/lon
- Used area of square instead of circle
 - 30-n mi circle:
 - 529 grid boxes: area of square is 27% larger than area of circle
 - 20-n mi circle
 - 225 grid boxes: area of square is 23% larger than area of circle
 - 10-n mi circle
 - 49 grid boxes: area of square is 13% larger than area of the circle
 - 5-n mi circle
 - 9 grid boxes: area of square is 16% smaller than area of the circle

Taming the Data

- Generated 864 spreadsheets in Excel[©] containing climatological probabilities of lightning for:
 - 9 sites
 - 3 time intervals
 - 4 different size circles
 - 8 flow regimes
- Tables contained:
 - Climatological probability of lightning
 - UTC time
 - Number of CG strikes for each hour
 - Number of flow regime days in the POR


SLF, hourly, Southwest-2 flow regime, 5 n mi circle			
Probability (%)	UTC Time	# Strikes	# Flow Regime Days
4	0	268476	271
4	1	292974	271
4	2	253788	271
3	3	175805	271
1	4	140630	271
0	5	118449	271
0	6	100309	271
0	7	86359	271
0	8	85585	271
0	9	92138	271
0	10	97960	271
0	11	103508	271
0	12	112800	271
0	13	125424	271
0	14	139956	271
0	15	149935	271
0	16	175178	271
1	17	217121	271
4	18	282131	271
8	19	348460	271
7	20	430364	271
12	21	487357	271
12	22	475868	271
10	23	429330	271

User Friendly Format

- Merged the data from multiple spreadsheets into data tables grouped by time interval and flow regime
- Created graphs from the tables to provide a "quick look" tool for the forecasters

Southwest-1	5 nmi	10 nmi	20 nmi	30 nmi
00-01 UTC	4%	11%	23%	31%
01-02 UTC	4%	8%	18%	24%
02-03 UTC	4%	8%	13%	18%
03-04 UTC	3%	5%	8%	13%
04-05 UTC	1%	3%	5%	7%
05-06 UTC	0%	1%	3%	4%
06-07 UTC	0%	0%	1%	3%
07-08 UTC	0%	0%	1%	2%
08-09 UTC	0%	0%	1%	1%
09-10 UTC	0%	0%	1%	1%
10-11 UTC	0%	0%	0%	1%
11-12 UTC	0%	0%	0%	1%
12-13 UTC	0%	0%	0%	1%
13-14 UTC	0%	0%	1%	1%
14-15 UTC	0%	1%	1%	1%
15-16 UTC	0%	1%	2%	3%
16-17 UTC	0%	1%	4%	5%
17-18 UTC	1%	3%	7%	8%
18-19 UTC	4%	7%	14%	19%
19-20 UTC	8%	14%	20%	27%
20-21 UTC	7%	14%	26%	34%
21-22 UTC	12%	23%	35%	42%
22-23 UTC	12%	23%	35%	45%
23-00 UTC	10%	18%	28%	39%
Southwest-1	5 nmi	10 nmi	20 nmi	30 nmi

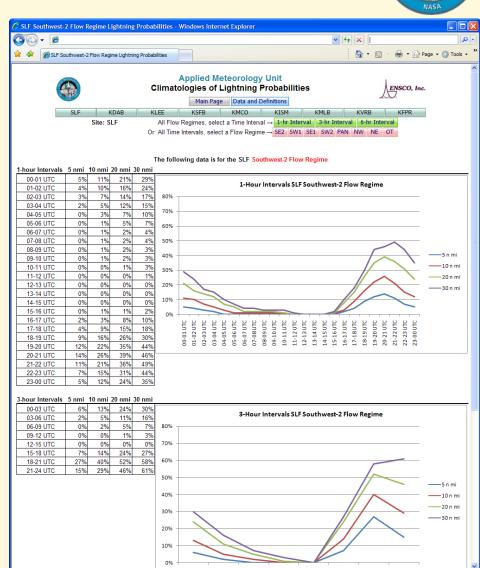
Southwest-1	5 nmi	10 nmi	20 nmi	30 nmi
00-03 UTC	5%	10%	15%	23%
03-06 UTC	0%	1%	4%	6%
06-09 UTC	0%	0%	2%	3%
09-12 UTC	0%	0%	1%	2%
12-15 UTC	0%	1%	3%	3%
15-18 UTC	8%	16%	22%	27%
18-21 UTC	23%	36%	49%	54%
21-00 UTC	18%	30%	41%	51%

Southwest-1	5 nmi	10 nmi	20 nmi	30 nmi
00-06 UTC	5%	10%	17%	24%
06-12 UTC	0%	1%	3%	4%
12-18 UTC	9%	16%	23%	27%
18-00 UTC	35%	50%	61%	66%

Twenty-four 1-hr periods

Eight 3-hr periods

Four 6-hr periods



Tying It All Together for the Forecaster

- Built a GUI using HTML
 - Easily navigable web site
 - Platform independent
- Navigation
 - Data and Definitions
 - Nine sites
 - Flow regime or time interval
- Displays both tables and corresponding graphs

Demo

Summary

- Objective: provide warm season climatological probability of one or more lightning strikes within a circle at a site within a specified time interval
 - Focus on Space Shuttle landings and NWS TAFs
 - Four circles around sites: 5, 10, 20 and 30 n mi
 - Three time intervals: 1 hr, 3 hr and 6 hr
- Based on:
 - NLDN gridded data
 - Flow regime
 - Warm season months of May-Sep for years 1989-2004
- Gridded data and available code → squares, not circles
- Over 850 spreadsheets converted into manageable userfriendly web-based GUI