

Improvements to the Objective Lightning Probability Forecast Tool in use at Cape Canaveral Air Force Station, Florida

Winnie Lambert and Mark Wheeler AMU/ENSCO, Inc. William Roeder USAF 45th Weather Squadron

Applied Meteorology Unit

Outline

Overview

- Background on Former and Current Tools
- Description of Current Tool
- Planned Modifications to Current Tool
- Summary

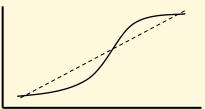


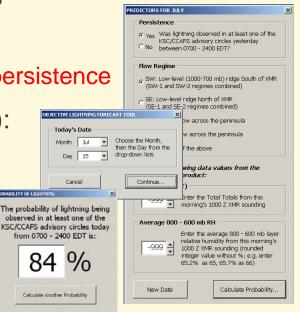
Overview

- 45 WS provides lightning probability for the day
 - Daily Weather Briefing at 7:00 am local time
 - Used for general daily Range operations planning
- Subjective analysis of model and observational data
- AMU-developed Objective Lightning Forecast Tool
 - Provide probability of lightning occurrence May–September
 - Accessed through GUI
- 45 WS requested an update to the tool:
 - Modify certain predictors and possibly improve performance
 - Create automated access to equations

Background

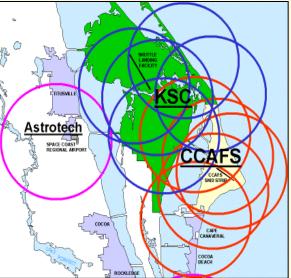
- Previous objective lightning forecasting tool: Neumann-Pfeffer Thunderstorm Index (NPTI)
 - Developed over 30 years ago, tuned to KSC/CCAFS area
 - Official objective lightning forecasting tool
- NPTI performance worse than 1-day persistence
- Forecasters requested new lightning forecast tool
- New tool showed
 - 31-53% (month dependent) improvement over 1-day persistence
 - Good reliability, accuracy measures, and skill scores
 - Ability to distinguish between lightning/non-lightning days
 - Transitioned to operations before 2005 lightning season





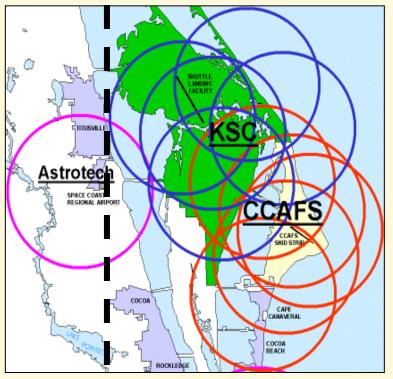
Current Lightning Probability Tool

- 5 equations output probability of CG occurrence
 - One equation for each month
 - Logistic regression: $y = \frac{e^{(b_0+b_1x_1+...+b_kx_k)}}{1+e^{(b_0+b_1x_1+...+b_kx_k)}}$
- Each equation has 5-6 predictors
 - Common to all 5 equations:
 Daily climatology, flow regime, 1-day persistence
 - Common to 4 equations (Jun Sep):
 Mean RH in 800–600 mb layer
- Created GUI to interface with complex equations



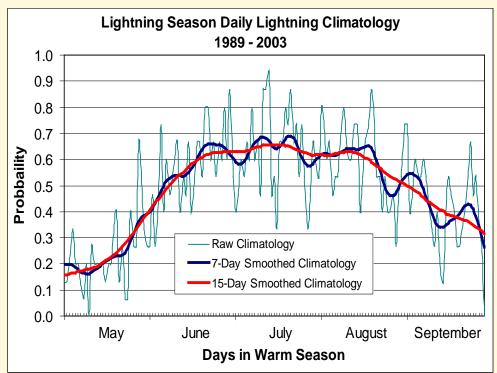
Data Sources


- POR May-September (warm season) 1989–2003
- Area: Rectangle surrounding all 5 nmi warning circles
- Cloud-to-Ground Lightning Surveillance System
- CCAFS 1000 UTC sounding
 - Data used in 7:00 am briefing
 - 10 stability parameters (e.g. LI, KI, etc.)
- Florida 1200 UTC soundings
 - Flow regimes
 - Low-level wind dir at MIA TBW JAX



Modifications to Current Tool Valid Area

- Current valid area includes all users of CG forecast
- Overestimate probabilities
 - Large area outside of circles
 - CG density climatology increases inland
- More representative of CG in KSC/CCAFS area
- Re-calculate 3 predictors:
 daily climo, flow regime, persistence



Modifications to Current Tool Daily Climatology

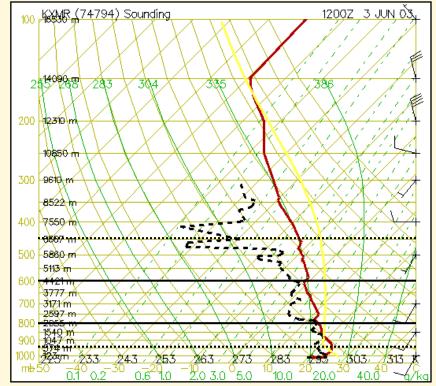
- Number of days with CG for each day in period
- Re-calculated values using new area
- Also used a new smoothing technique
 - Center-weighted Gaussian
 - Current (dark blue curve):
 ±7 days, scale = 3 days
 - New (red curve):
 ±15 days, scale = 7 days

Modifications to Current Tool Flow Regime

Flow Regime	Total # Days	# Ltg Days	Ltg Prob	Wayerdes (ATS) Jacksonville (JAX)
Ridge S of MIA	271	179	66 %	Atlant Ocea
Ridge between MIA/TBW	218	158	72 %	
Ridge between TBW/JAX	283	143	51 %	Cape Canaveral (XM
Ridge N of JAX	218	85	39 %	Gulf of Mexico
NW	93	40	43 %	West Palm B
NE	100	18	18 %	Miami (MA)
Other (Regime Undefined)	945	418	44 %	

• Recalculate values for new valid area

- Recalculate values for new value area
 Les 107.004 EC seconding as discrimina
- Use 10Z CCAFS sounding as discriminator
 - Ridge north or south of CCAFS
 - Reduce the number of cases in 'Other' regime



Modifications to Current Tool Optimize Mid-Layer RH

- Used as a predictor in NPTI
- Perpetuated in following studies
- No rigorous attempts to test other layers
- Use an automatic iterative technique
 - Analyze +/- 50 mb layers from top and bottom of layer
 - Bottom: 950 mb; Top: 450 mb

1000 UTC 3 June 2003 CCAFS Sounding

Modifications to Current Tool Automated Access

24 Hour Planning Forecast

Monday, August 30, 2004

Cape Canaveral Spaceport

(Updated by 08L, 16L, & 00L)

	Monday 1st P	Monday eriod		Monday 2nd P	Monday eriod		Tuesday 3rd P	Tuesday eriod	
FORECAST	0800-1200L	1200-1600L]	1600-2000L	2000-2400L		0000-0400L	0400-0800L	
Sky Condition	Partly Cloudy	Mostly Cloudy		Mostly Cloudy	Mostly Cloudy		Mostly Cloudy	Mostly Cloudy	
Precipitation Probability	20%	90%		90%	60%		30%	10%	
Lightning Probability	10%	80%		80%	40%		20%	10%	
Prevailing Winds (Speed in knots)	SVV 5-8	SE 7-10		SE 8-12	SW 7-10		NW 6-10	NW 6-10	1
Temperature Range (Fahrenheit)	77-84	84-87		87-79	79-75		75-74	74-76	
Remarks									
Severe Weather Potential	NONE	MODERATE		MODERATE	LOW		NONE	NONE	
	(Sever	e Weather is defined as	- : Tornad	oes, wind GTE 50kts, an	dłor hail GTE 3/4")				
Sunrise: 30/0700 L									
Sunset: 30/1945 L									
		FOR PLAN	NING	PURPOSES O	NLY.			Prepared by 45WS	
Moonrise: 30/2029 L							Bang	ge Weather Operations	
Moonset: 31/0827 L									

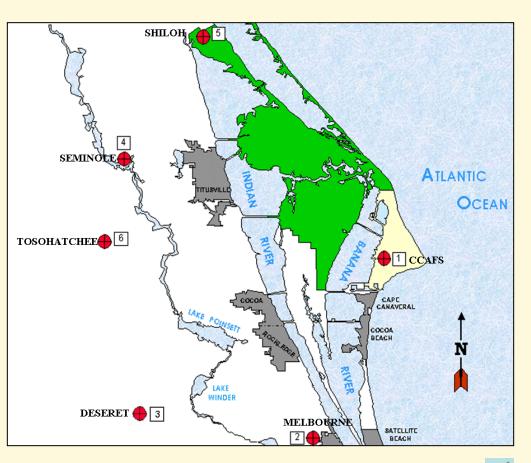
Illumination:

98 %

Summary

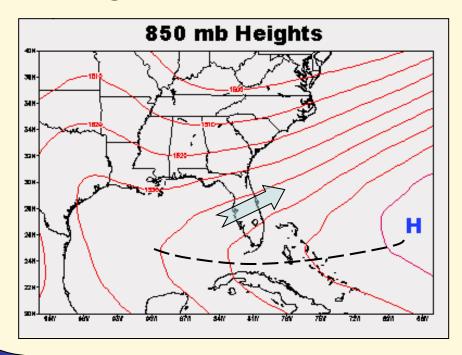
- Current equations perform well
- Further Improvements:
 - Restrict area to KSC/CCAFS
 - Add data from 2004, 2005
 - Develop new daily climatology
 - Modify/test flow regime
 - Optimize mid-level RH predictors
- Automate data input
- Use probability with other data and forecaster experience

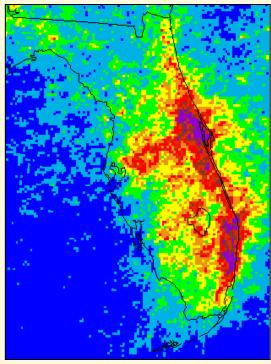
AMU Website: http://science.ksc.nasa.gov/amu



Cloud-to-Ground Lightning Surveillance System (CGLSS)

- Network of 6 sensors
 IMPACT: MDF & TOA
- Provides date/time, lat/lon, strength, polarity of CG strikes
- Better detection efficiency and location accuracy than NLDN in KSC/CCAFS area





Flow Regimes

- Flow in lower atmosphere influences positions of sea breezes from Atlantic Ocean and Gulf of Mexico
- Thunderstorm activity varies across Florida peninsula according to sea breeze fronts

