

Using a Network of Boundary Layer Profilers to Characterize the Atmosphere at a Major Spaceport

Jonathan L. Case¹, Winifred Lambert¹, Francis Merceret², and Jennifer Ward²

¹ENSCO Inc., Cocoa Beach, Florida, USA ²NASA, Kennedy Space Center, Florida, USA

Study Summary

Spacelift operations at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) are highly sensitive to local weather conditions. Due to the complex land-water interfaces and their strong influence on local mesoscale circulations, a network of 5 915-MHz profilers was installed over the KSC/CCAFS area to compliment other sensors already in place. This poster presents one case showing the utility of the 915-MHz profiler network in identifying characteristics of sea/land breezes and low-level jets.

10-11 May 2000 Sea- / Land-Breeze / Low-level Jet Event

This typical case study shows 3 phenomena that occurred in sequence over a 12-hour period: a sea breeze passage, low-level jet formation/dissipation, and land-breeze onset. Each has a

distinct effect on operations at KSC/CCAFS. Sea breezes influence the high temperature, relative humidity, wind speeds and directions, and rain/thunderstorm formation. Land-breezes influence the minimum temperature and wind speeds and directions. All operations on KSC/CCAFS have specific thresholds for these variables that can not be exceeded. The relatively short-lived and strong low-level jets could have an adverse effect on toxic dispersion, launches or Space Shuttle landings. As can be seen in the images below, the 915-MHz profilers provide a means for observing the formation, strength, and dissipation of these phenomena.

'-Høt X-Section of uwnd at DRWP2 on 10 MAY 2000

10 12 14 16 18 20

