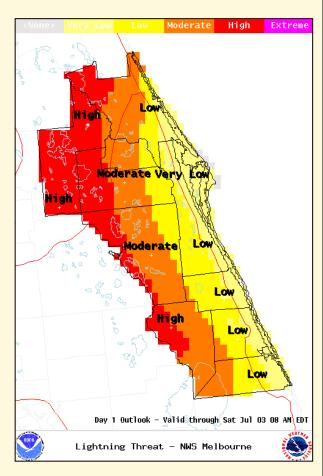


Using Cloud-to-Ground Lightning Climatologies to Initialize Gridded Lightning Threat Forecasts for East Central Florida

Winifred Lambert AMU/ENSCO, Inc.

David Sharp, Scott Spratt, and Matthew Volkmer

National Weather Service, Melbourne, FL



Current Lightning Threat Index

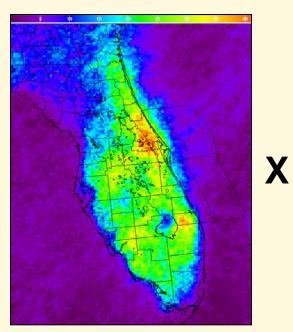
- Cloud-to-Ground (CG) Lightning Threat Index Map at NWS Melbourne
 - Issued daily at 1200 UTC
 - 5 color-coded threat levels at 5 x 5 km
 - Probability of thunderstorm occurrence
 - Expected amount of CG activity
- Created manually on AWIPS/GFE from a blank field
- Current map based on subjective assessment based on distribution of thunderstorm formation parameters

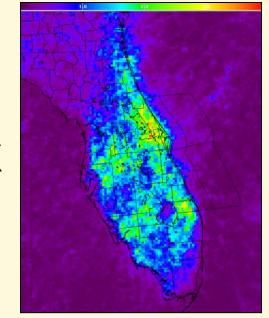
Lightning Threat Indices

• Threat levels in map depend on

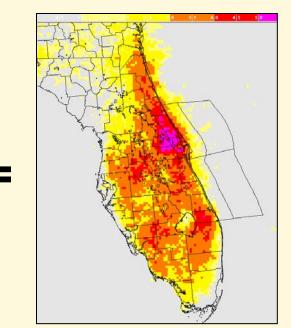
- Probability of thunderstorm occurrence
- Expected amount of CG

 Ranges of probabilities and CG amounts within each level


Threat Level	Threat Level Descriptions
Extreme	50% probability with excessive CG 60 - 70% probability with frequent CG 80 - 90% probability with occasional CG
High	30 - 40% probability with excessive CG50% probability with frequent CG60 - 70% with occasional CG
Moderate	10 - 20% probability with excessive CG30 - 40% probability with frequent CG50% probability with occasional CG
Low	10 - 20% probability with frequent CG 30 - 40% probability with occasional CG
Very Low	10 - 20% probability with occasional CG
None	No Threat



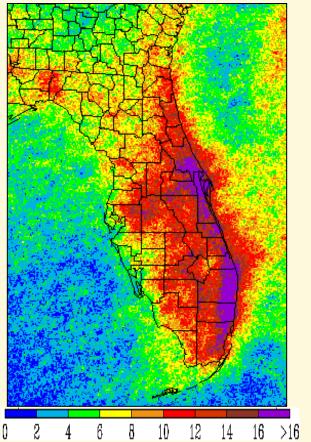
First Guess Threat Index Map



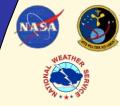
Climatological Probability of Lightning Occurrence

Climatological Number of Strikes

First Guess Lightning Threat Index Map



Motivation



- NWS MLB requested climatologies of CG probability and amount to create first guess field
 - Increase efficiency
 - Improve consistency
- Climatologies stratified by synoptic flow regime and time intervals
 - Previous work shows connection between flow regime and CG occurrence
 - Increase time resolution of map to show threat for different time periods of the day

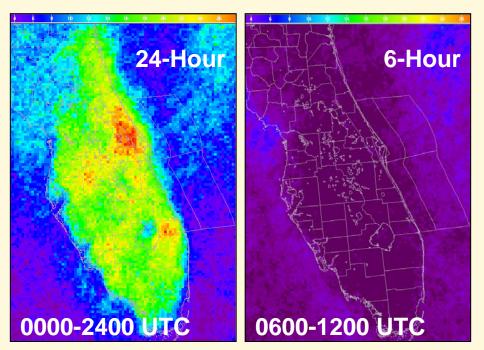
24-hour CG Probability for Southwest Flow (Stroupe 2003)

Flow Regimes

- 1000–700 mb average wind direction 1200 UTC soundings at MIA / TBW / JAX
- Combination of 3 directions determined flow regime
- 7 flow regimes:
 - 1) Ridge south of MIA
 - 2) Ridge btwn MIA/TBW
 - 3) Ridge btwn TBW/JAX
 - 4) Ridge north of JAX
 - 5) Ridge over Florida Panhandle
 - 6) Northwest flow
 - 7) Northeast flow

Data

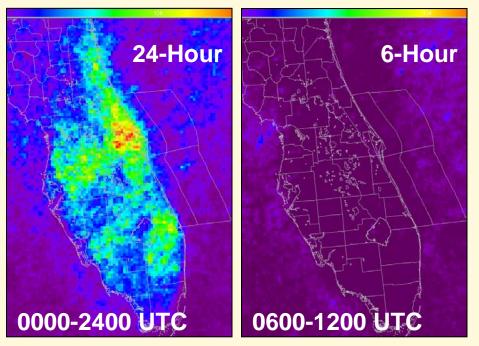
- Warm season (May September) 1989 2004
- Previous studies at Florida State University (FSU) and NWS Tallahassee (TAE) with similar goals
- FSU and NWS TAE provided:
 - Lightning data grids
 - Created from NLDN data
 - Hourly CG counts on 2.5 x 2.5 km grid
 - Covers state of Florida and adjacent waters
 - Flow regime dates of occurrence
 - Code to read and process lightning grids



Climatologies

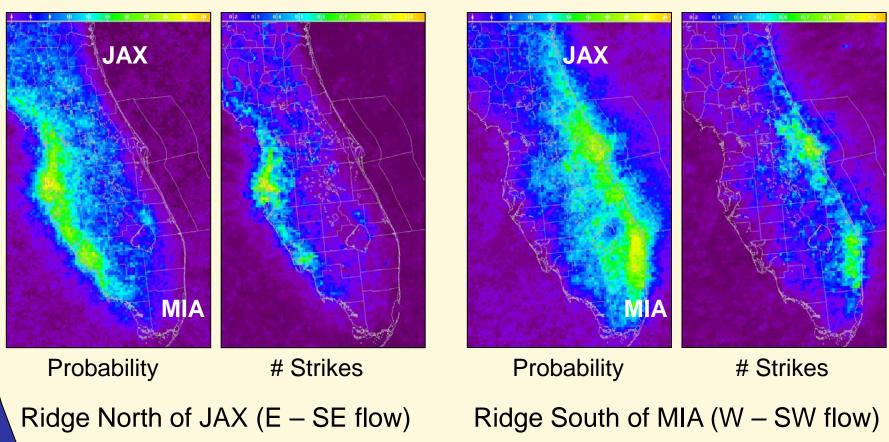
- Stratified gridded CG data
 - By daily flow regime
 - 24- and 6-hour intervals
- Calculated values for each
 2.5 x 2.5 km grid box
 - Probability of CG occurrence per regime
 - Mean number of CG strikes per regime

Probability of CG Occurrence



Climatologies

- Stratified gridded CG data
 - By daily flow regime
 - 24-, and 6-hour intervals
- Calculated values for each
 2.5 x 2.5 km grid box
 - Probability of CG occurrence per regime
 - Mean number of CG strikes per regime



Mean Number of CG Strikes

Future Work and Summary

- Future work (AMU tasking meeting 6 March):
 - Use offset time intervals (e.g. 1500–0300 UTC)
 - Consider strength of flow
 - Stratify by month as more data are collected over time
- Created gridded climatologies of CG probabilities and number of strikes stratified by
 - Large scale flow regime
 - 24- and 6-hour time intervals
- Used to create a first-guess lightning threat index map

Lightning Threat Map: <u>http://www.srh.noaa.gov/mlb/ghwo/lightning.shtml</u> AMU Website: <u>http://science.ksc.nasa.gov/amu</u>

