Implementing the VAHIRR Launch Commit Criteria Using Existing Radar Products

Francis J. Merceret, NASA Michael McAleenan, Todd McNamara, Johnny Weems and William Roeder, 45th Weather Squadron

8.7: 12th ARAM Conference, January 2006

Overview

Definition of VAHIRR
 Implementation

 Current radar products cannot do true VAHIRR
 Current products permit conservative

- Current products permit conservative work-around pending development of true VAHIRR software

The VAHIRR Concept

- <u>Vertically</u> <u>Averaged</u>
- Height Integrated
- <u>R</u>adar <u>R</u>eflectivity
- Defined at each horizontal (X-Y) point
- Must be less than the specified threshold at each point of the flight's ground track
- Safely relaxes restrictive triggered lightning launch constraints

Computing VAHIRR

- In a <u>specified volume</u> (explained on next chart)
- Compute <u>average radar reflectivity</u> (ARR) in dBZ, excluding reflectivity < 0 dBZ</p>
- Compute average cloud top height (cth)
- Compute average cloud base height
- Cloud thickness (CT) = cth minus greater of
 - height of the 0C isotherm
 - average cloud base height
- VAHIRR = ARR * CT

The VAHIRR "Specified Volume"

Cloud Top

Ground

The Problem

- VAHIRR safely reduces unnecessary launch delays and scrubs
- Current radar products do not allow the operator to take advantage of VAHIRR
 - Requires volume averaged radar reflectivity
 - No current operational radar product generates a volume average

The Workaround

- Current radar products can be used to determine cloud top and cloud base heights and thus cloud thickness (CT)
- Current products include user selectable layer <u>maximum</u> reflectivity (MAX)
- Workaround (WA) = MAX * CT
- WA is conservative since WA >= VAHIRR

Implementing WA: Radar

Max Reflectivity Product

Take Vertical Cross Section Along Anvil Axis 40Anvil Cloud (max reflectivity) 5nm *ithin* 35 1525 tusviT Τi 1.0 15 Cocoa Bch 40 PAFB Melb Bch

Implementing WA: Radar

Vertical Cross Section

Implementing WA: Thresholds

Average Anvil Thickness (Ft)		Max Reflectivity Allowed (dBZ)
	1,000	33.00
	2,000	16.50
	3,000	11.00
	4,000	8.25
	5,000	6.60
	6,000	5.50
	7,000	4.71
	8,000	4.13
	9.000	3.67
	10,000	3.30
	11,000	3.00
	12,000	2.75

Summary

- VAHIRR provides safe relaxation of anvil lightning launch commit criteria (LLCC)
- Until VAHIRR software can be developed and certified, a workaround is needed to take advantage of the new LLCC
- Use of existing user-selectable layer maximum products and cross sections provides a conservative workaround