



### Development of a Severe Weather Forecast Decision Aid for East-Central Florida

30<sup>th</sup> Annual Meeting of the National Weather Association 18 October 2005

> William H. Bauman III Mark M. Wheeler David A. Short

Applied Meteorology Unit (NASA, USAF & NWS) ENSCO, Inc.





## Background



- Goal
  - Develop an objective east-central Florida locally tuned severe weather forecast decision aid
  - Alert forecasters to the possibility of a severe weather event for the day
- Requirement
  - Use information routinely available to forecasters
  - Available for morning briefing
- Functionality
  - An easy-to-use interactive severe weather forecast tool







#### Data Sets



- Period of record
  - 1989 2003
  - May to September
- NCDC and SPC severe weather events data bases
  - Differentiate between severe weather days and days with no reported severe weather
  - Severe weather occurred
    13% of all days in POR

"Just because a severe event wasn't reported doesn't mean there wasn't severe weather"







#### Data Sets



- Local forecast rules
  - 45<sup>th</sup> Weather Squadron (45 WS) at Cape Canaveral Air Force Station (CCAFS)
  - Visits to select Florida NWS forecast offices
    - Melbourne, Jacksonville and Tampa
    - Jacksonville office was only office of 3 visited to use a severe weather checklist based on sounding stability parameters







#### Data Sets



- 250 mb and surface charts
  - Speed max features
  - High pressure ridge position



- Cape Canaveral AFS 1000 UTC (0600 EDT) rawinsonde
  - Calculate stability parameters
  - For morning weather discussion

- Cloud-to-Ground Lightning Surveillance System (CGLSS)
  - Differentiate between lightning and non-lightning days



CGLSS Antenna Sites





Results – Synoptic Patterns



#### Occurrence of severe weather for all days in POR

| Surface     |     | 250 mb                  |     |
|-------------|-----|-------------------------|-----|
| Ridge north | 5%  | Speed max overhead      | 8%  |
| No ridge    | 10% | No speed max            | 11% |
| Climatology | 13% | Climatology             | 13% |
| Ridge south | 22% | Divergence              | 18% |
|             |     | Speed max entrance/exit | 19% |





## Results – Thresholds & Stability



- Calculated stability indices for each type of day (severe days, lightning days, and non-lightning days) based on the morning CCAFS sounding
- Evaluated relationship between each stability parameter from the soundings and the threshold criteria for the severe weather threat
  - 45 WS Severe Weather Worksheet
  - JAX Severe Weather Checklist
  - Forecaster experience
  - National criteria (if nothing local was available)







### **Results – Stability Parameters**



- Stability parameters that indicated > 20% occurrence of severe weather – but only at highest thresholds
  - Total Totals > 48
  - Lifted Index < -5</li>
  - − Thompson Index  $\ge$  40
  - Showalter Stability Index < -2</li>
  - Cross Totals ≥ 24
  - CAPE FMaxT > 3500 J/Kg
  - K-Index < 26 (only 8% occurrence)</li>
  - Precipitable Water < 1.0" (only 3% occurrence)</li>







## **Results – Stability Parameters**



- Stability parameters that indicated similar occurrence of severe weather – at all thresholds & close to climatology
  - SWEAT
  - CAPE
  - CAPE  $Max\theta_e$
  - T<sub>500</sub>
  - Helicity







# Severe Weather Forecast Decision Aid



- Interactive, web-based
- Not completely objective
- Only included parameters showing direct relationship to occurrence of severe weather
- Higher the *Total Threat Score*, greater chance of severe weather
  - Tested by forecasters
  - AMU will evaluate
- <u>Demo</u>







### Summary



- Used several warm season data sets from 1989-2003
- Categorized all days into severe weather, lightning only or no lightning and no severe weather
- Examined synoptic features and stability parameters
- Developed an east-central Florida locally tuned Severe Weather Forecast Decision Aid
- Tested by forecasters Summer 2005

#### http://science.ksc.nasa.gov/amu

