

Forecasting Lightning at Kennedy Space Center and Cape Canaveral Air Force Station, Florida

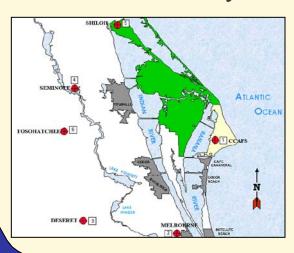
Winnie Lambert and Mark Wheeler

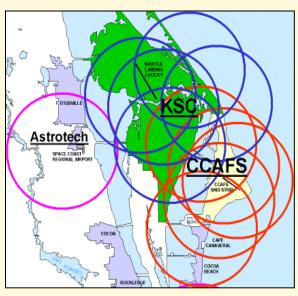
AMU/ENSCO, Inc.

William Roeder

USAF 45th Weather Squadron

Motivation


- 45 WS provides lightning probability for the day
- Subjective analysis of model and observational data
- Performance of current objective tool, Neumann-Pfeffer Index, worse than 1-day persistence
- Forecasters requested new objective tool
- Results from 2 research projects used in development
 - Everitt (1999) developed logistic regression equations that improved skill over Neumann-Pfeffer
 - Lericos et al (2002) identified major flow regimes over Florida and associated lightning distributions


Data Sources

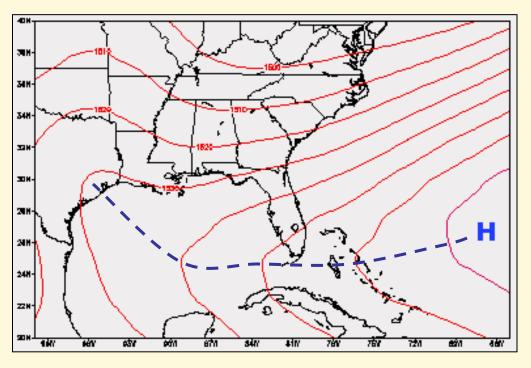
- POR May-September (warm season) 1989 – 2003
- Area: Rectangle surrounding all 5 nmi warning circles
- Cloud-to-Ground Lightning Surveillance System

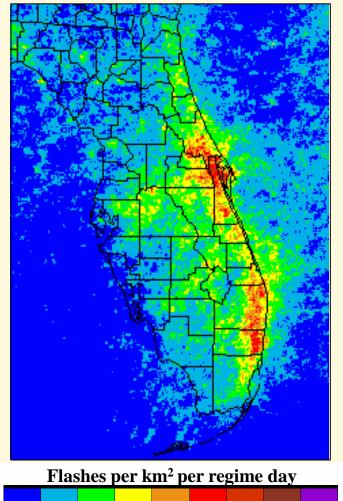
- CCAFS 1000 UTC sounding
- Florida 1200 UTC soundings

Flow Regimes

1200 UTC MIA/TBW/JAX

- Average wind direction in 1000 – 700 mb layer defined flow regime
- Lightning frequencies calculated for each flow regime
 - Each individual month
 - Entire warm season


Flow Regime	Total # Days	# Ltg Days	Ltg Prob	
SW-1 Ridge S of MIA	271	179	66 %	
SW-2 Ridge between MIA/TBW	218	158	72 %	
SE-1 Ridge between TBW/JAX	283	143	51 %	
SE-2 Ridge N of JAX	218	85	39 %	
NW	93	40	43 %	
NE	100	18	18 %	
Other (Regime Undefined)	945	418	44 %	
TOTALS	2128	1041	49 %	



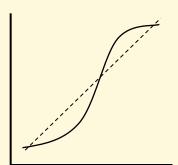
SW-1 Flow Regime Example

Low-level ridge south of Miami

Flow Regimes

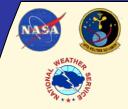
1200 UTC MIA/TBW/JAX

- Average wind direction in 1000 – 700 mb layer defined flow regime
- Lightning frequencies calculated for each flow regime
 - Each individual month
 - Entire warm season

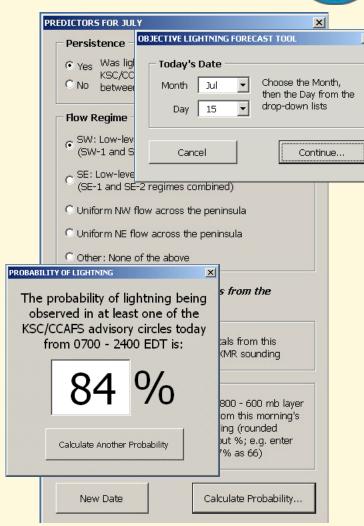

Flow Regime	Total # Days	# Ltg Days	Ltg Prob	
SW-1 Ridge S of MIA	271	179	66 %	
SW-2 Ridge between MIA/TBW	218	158	72 %	
SE-1 Ridge between TBW/JAX	283	143	51 %	
SE-2 Ridge N of JAX	218	85	39 %	
NW	93	40	43 %	
NE	100	18	18 %	
Other (Regime Undefined)	945	418	44 %	
TOTALS	2128	1041	49 %	

Equation Development

- Data stratified into development (13 years) and testing (2 years) data sets
- Logistic Regression: $y = \frac{e^{(b_0 + b_1 x_1 + ... + b_k x_k)}}{1 + e^{(b_0 + b_1 x_1 + ... + b_k x_k)}}$
- One equation for each month


Predictors for each month in rank order					
Мау	June	July	August	September	
Thompson Index	800-600 mb RH	Total Totals	K-Index	Persistence	
Flow Regime	Persistence	Persistence	Flow Regime	Flow Regime	
Persistence	Lifted Index	800-600 mb RH	Total Totals	800-600 mb RH	
Daily Climatology	Flow Regime	Daily Climatology	Daily Climatology	Daily Climatology	
500 mb Temp	Daily Climatology	Flow Regime	800-600 mb RH	Lifted Index	
			Persistence		

Equation Testing


- Conducted 4 tests to determine equation performance
- Contingency Table statistics, optimal at 60% cutoff
 - Equations: POD 75% FAR 33% HR 73%
 - Persistence: POD 67% FAR 37% HR 68%
- Brier Skill Scores showed 31-53% improvement over 1-day persistence
- Possess good ability to distinguish between lightning and non-lightning days
- Good reliability, with a slight tendency to over-forecast lightning occurrence
- Good performance, transitioned to operations

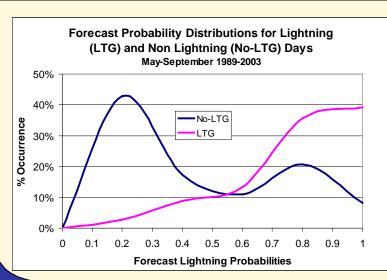
Graphical User Interface

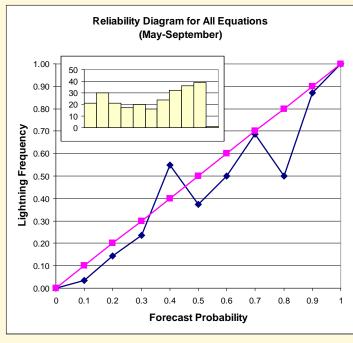
- Forecasters need interface to complex equations
- Built using Visual Basic[®] in Microsoft[®] Excel[©]
- Workbook has 6 worksheets
 - Instructions
 - Data for each month
- GUI has 3 dialog boxes
 - Current month and day
 - Other predictors: persistence, flow regime, and stability index values
 - Lightning occurrence probability
- Demo

Conclusions

- New equations perform well, outperform Neumann-Pfeffer Index and 1-day persistence
- GUI has been transitioned to operations
- Tasked to update equations and automate data input
- Provides first guess to be used along with other data and forecaster experience

AMU Website: http://science.ksc.nasa.gov/amu




Equation Testing

% Improvement over Benchmark Methods

Forecast Method	May	Jun	Jul	Aug	Sep
1-Day Persistence	31	53	38	42	43
Daily Climatology	27	18	27	12	21
Monthly Climatology	34	20	27	16	22
Flow Regime	34	13	20	8	21

Equations:

POD = 75% FAR = 33% HR = 73%

CSI = 0.55 HSS = 0.45 KSS = 0.46

Persistence:

POD = 67% FAR = 37% HR = 68%

CSI = 0.48 HSS = 0.36 KSS = 0.34