

Objective Lightning Forecasting at KSC/CCAFS using Cloud-to-Ground Lightning Surveillance System Data

Winnie Lambert and Mark Wheeler AMU/ENSCO, Inc. William Roeder USAF 45th Weather Squadron

Applied Meteorology Unit

Motivation

- 45 WS provides lightning probability for the day
- Subjective analysis of model and observational data
- Performance of current objective tool, Neumann-Pfeffer Index, worse than 1-day persistence
- Forecasters requested new objective tool
- Results from 2 research projects used in development
 - Everitt (1999) developed logistic regression equations that improved skill over Neumann-Pfeffer
 - Lericos et al (2002) identified major flow regimes over Florida and associated lightning distributions

Data Sources

- POR May-September (warm season) 1989 - 2003
- Cloud-to-Ground Lightning Surveillance System (CGLSS)
- CCAFS 1000 UTC sounding
- Florida 1200 UTC soundings:
 - Jacksonville (1995 2003)
 - Tampa (1989 2003)
 - Miami (1995 2003)
 - Waycross GA (1989 1994)
 - West Palm Beach (1989 1994)

CGLSS Data

- Filtered to only include:
 - 45 WS lightning advisory areas
 - Between 0700-Midnight EDT
- Determined lightning / nonlightning occurrence by day
- Used 3 ways:
 - Predictand for the equations
 - Daily climatological frequency of lightning occurrence
 - 1-day persistence

Sounding Data

CCAFS 1000 UTC 3 soundings/day 1000/1500/2300 UTC 10 stability indices 1200 UTC MIA/TBW/JAX Average wind direction in

- 1000 700 mb layer defined flow regime
- Lightning frequencies calculated for each flow regime
 - Each individual month
 - Entire warm season

Flow Regime	Total # Days	# Ltg Days	Ltg Prob	
SW-1 Ridge S of MIA	271	179	66 %	
SW-2 Ridge between MIA/TBW	218	158	72 %	
SE-1 Ridge between TBW/JAX	283	143	51 %	
SE-2 Ridge N of JAX	218	85	39 %	
NW	93	40	43 %	
NE	100	18	18 %	
Other (Regime Undefined)	945	418	44 %	
TOTALS	2128	1041	49 %	

SW-1 Flow Regime Example

 Flashes per km² per regime day

 .02
 0.5
 0.8
 1.2
 1.5
 1.8
 2.1
 2.4
 >2.4

Applied Meteorology Unit

Sounding Data

CCAFS 1000 UTC 3 soundings/day 1000/1500/2300 UTC

- 10 stability indices
- 1200 UTC MIA/TBW/JAX
 - Average wind direction in 1000 – 700 mb layer defined flow regime
 - Lightning frequencies calculated for each flow regime
 - Each individual month
 - Entire warm season

Flow Regime	Total # Days	# Ltg Days	Ltg Prob	
SW-1 Ridge S of MIA	271	179	66 %	
SW-2 Ridge between MIA/TBW	218	158	72 %	
SE-1 Ridge between TBW/JAX	283	143	51 %	
SE-2 Ridge N of JAX	218	85	39 %	
NW	93	40	43 %	
NE	100	18	18 %	
Other (Regime Undefined)	945	418	44 %	
TOTALS	2128	1041	49 %	

Equation Development

- Data stratified into development (13 years) and testing (2 years) data sets
- Logistic Regression: $y = \frac{e^{(b_0 + b_1 x_1 + ... + b_k x_k)}}{1 + e^{(b_0 + b_1 x_1 + ... + b_k x_k)}}$
- One equation for each month

Predictors for each month						
Мау	June	July	August	September		
Thompson Index	800-600 mb RH	Total Totals	K-Index	Persistence		
Flow Regime	Persistence	Persistence	Flow Regime	Flow Regime		
Persistence	Lifted Index	800-600 mb RH	Total Totals	800-600 mb RH		
Daily Climatology	Flow Regime	Daily Climatology	Daily Climatology	Daily Climatology		
500 mb Temp	Daily Climatology	Flow Regime	800-600 mb RH	Lifted Index		
			Persistence			

Equation Testing

- Brier Skill Score: Percent improvement in skill over a forecast benchmark
- 4 forecast benchmarks
- New equations improved skill over all benchmark methods

% Improvement over Benchmark Methods						
Forecast Method	Мау	Jun	Jul	Aug	Sep	
1-Day Persistence	31	53	38	42	43	
Daily Climatology	27	18	27	12	21	
Monthly Climatology	34	20	27	16	22	
Flow Regime	34	13	20	8	21	

Reliability Diagram

Purple curve:

Perfect reliability Blue curve: Equation reliability

Inset Histogram Number of probability values in each bin

Equation Testing

Probability Distributions

Purple curve:

Lightning days Blue curve: Non-lightning days

Conclusions

- New equations out-performed 4 forecast methods
- Good reliability, slight tendency to over-forecast
- Will be transitioned to operations
- Provides first guess to be used along with other data and forecaster experience

AMU Website: http://science.ksc.nasa.gov/amu

