Assessing The Forecast Impacts of Simulated GEMS Observations

Joseph Dreher, John Manobianco, Randolph J. Evans, Jonathan L. Case ENSCO, Inc.

13 January 2005 AMS Annual Meeting (San Diego, CA)

<u>Outline</u>

Concept Description

Deployment Scenario

Regional OSSE

Future Work

Motivation

- Produce observing capabilities commensurate with advances in atmospheric models
- Calibration/ground truth for space based measurement
- Complement remote sensing technology
- Improve density/distribution of in situ observations

Concept Description

- Global Environmental Micro Sensors (GEMS)
- Integrated system of airborne probes
 - Mass produced at very low per unit cost
 - Disposable
 - Suspended in the atmosphere (buoyancy)
 - Carried by wind currents
 - MicroElectroMechanical
 System (MEMS) and/or
 nanotechnology-based
 sensors (P, T, RH, velocity)

- Mobile, 3D wireless network with communication among
 - Probes
 - Intermediate nodes
 - Data collectors
 - Remote receiving platforms
- Self-contained with power source for
 - Sensing, geolocation, communication, limited computation

ENSCO, Inc.

Slide #3

Potential Deployment Strategies

- Stratospheric balloons
- Rawinsonde
- Surface release w/ positive buoyancy
- Unattended Aerial Vehicles
- Commercial aircraft

Surface Release

- ~ 4000 @ current METAR Stations (Northern Hemisphere)
- Altitude of 0.03 15 km
- 2-h release frequency
- 30-day duration
- 1,335,240 probes released

0000 UTC 1 June 2001 Initialization Probe altitude (km) given by color scale

Slide #5

Simulation Domains

Same lateral boundary conditions

Climatology

• 30-day accumulated precipitation for June 2001 Amount (mm) given by color scale

ENSCO, Inc.

Slide #7

Experiment Name	OBS assimilated in boundary conditions	OBS assimilated in domain
Conventional	Raob + METAR	Raob + METAR
GEMS + Conventional	Raob + METAR	GEMS from surface deployment + Raob + METAR

Preliminary OSSE Results

MM5 OSSE

2-day forecasts (1200Z 12 June – 1200Z 14 June 2001) Data assimilation every 3 h for 12-period (shown by shading)

> Conventional (surface + upper air measurements) GEMS + Conventional

Slide #9

Preliminary OSSE Results

Preliminary OSSE Results

Slide #11

Summary and Future Work

- Motivation
- Concept description
- Preliminary OSSE results
- Sensitivity to deployment scenario, precipitation scavenging, data density, & data assimilation period & frequency
- Add realistic errors to the assimilated meteorological variables
- Regional OSSE calibration
- Include simulated aircraft data in conventional data suite
- Additional OSSE including a winter case
- Run OSSE over longer time periods in order to mimic operational data assimilation forecast cycles

ENSCO, Inc. Slide #12

Acknowledgments

- Universities Space Research Association NASA Institute for Advanced Concepts
 - Phase I funding
 - Phase II funding

