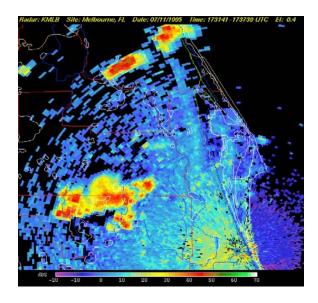
A Decade of Weather Technology Delivered to America's Space Program by the Applied Meteorology Unit



Francis J. Merceret (NASA/KSC) William H. Bauman III (ENSCO, Inc./AMU) William P. Roeder (USAF/45WS) Richard A. Lafosse (NWS/JSC/SMG) David W. Sharp (NWS/MLB)

Overview

- What's an AMU?
 - Purpose
 - History
 - How it works
- Technology delivered: a sampler
 - Forecast tools
 - Numerical weather prediction
 - Sensors
 - Miscellaneous

Purpose of the AMU

- <u>Goal</u>: Improve weather support to Space Shuttle and America's space program
- <u>Method</u>: Bridge the gap between research and operations
- <u>Technology Functions:</u>
 - Develop
 - Evaluate
 - Tailor
 - Transition

History of the AMU

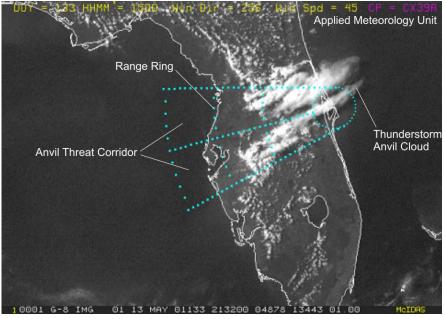
- Established Oct 1991 by NASA, USAF, NWS MOU
 - Co-located with Range Weather Operations
 - Operated by ENSCO, Inc. under NASA contract
- Nationally recognized process for tasking by customers
- Outstanding performance
 - Technical quality reflected in journal articles
 - Administrative quality reflected in corporate award
 - Customer satisfaction reflected in direct feed-back plus personal and group awards

How We Work: Tasking

- Customer-driven base-funded formal prioritized tasking
 - Quasi-annual in-person meeting
 - Teleconferences as required

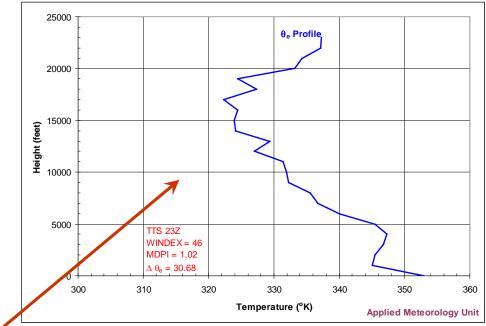
- Consensus process cited by
 Navy Best Manufacturing Practices Institute
- Customer-funded options hours tasking
- Customer-requested mission immediate tasking

How We Work: Task Execution


- Customer involvement throughout
 - Design of the approach to be taken
 - Determination of the deliverables
 - Detailed technical reports quarterly
 - Teleconferences at key decision points
 - Beta testing and document preview
 Training and follow-up after delivery
- Also cited by Navy Best Manufacturing Practices Institute

Anvil Forecast Tool

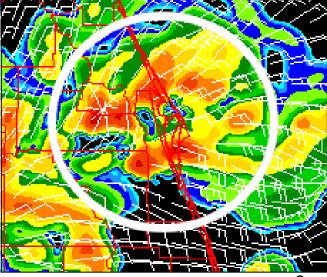
- Requirement:
 - Lightning Launch Commit Criteria
 - Space Shuttle Flight Rules
 - Avoid natural and triggered lightning
- Provided:
 - Threat corridor: if thunderstorms form here, their anvils will violate rules
 - Based on:
 - o Balloon observation
 - o Model forecast


- Timing Rings: time until Launch & Flight Rules violated

Based on wind speed in anvil layer

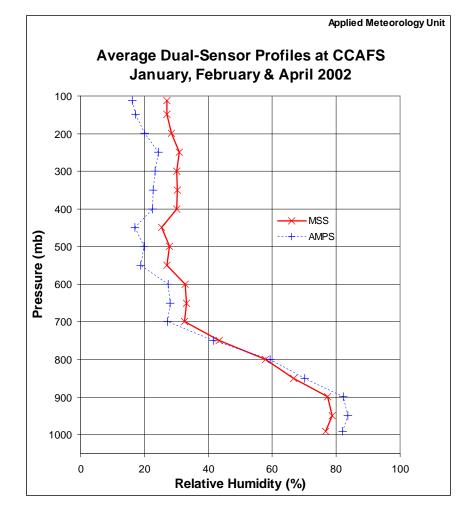
Microburst Prediction Tool

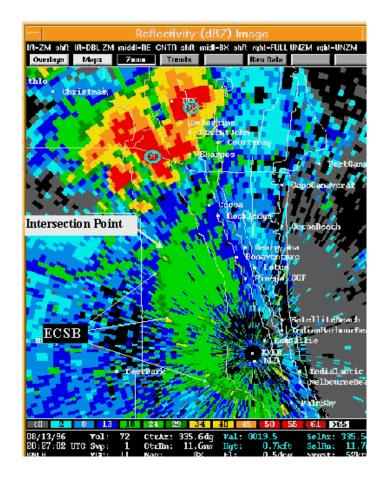
- Requirement: improve severe wind forecasts
- Provided:
 - Microburst-Day
 Potential Index
 - Downburst probability
 - Wind Index
 - Downburst maximum gust
 - Atmospheric stability chart



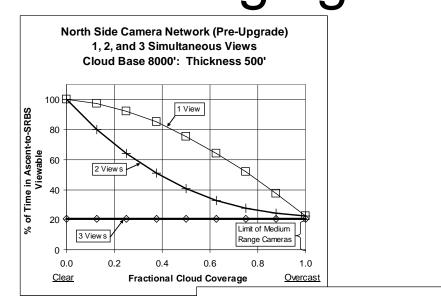
Numerical Weather Prediction

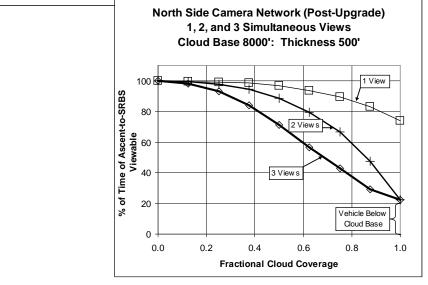
- Provided: local data assimilation software
 - All available data in one gridded database
 - Significant improvement in initialization of local forecast models
- Result:
 - Forecast improvement for all applications
 - Significant improvement in data visualization


<u>With</u> radar data

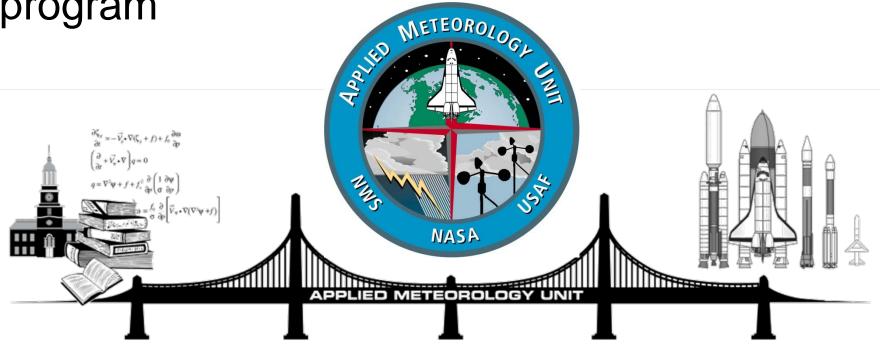

Sensor Evaluation

- Requirement: compare data from legacy upper air system with new one
 - Temperature and relative humidity differences
 - Changes in the measures of atmospheric stability
- Provided:
 - Documentation of relative humidity and temperature differences vs. altitude
 - Evaluation of impact on thunderstorm forecast indices


Severe Weather Event


- Requirement: evaluate why tornadoes and downbursts of 13 Aug 96 were poorly forecast
 - 'Mission Immediate' tasking
 - Damage to many cars, several buildings, and one aircraft
- Provided:
 - In-depth case study
 - Several training briefings

Shuttle Optical Imaging


- CAIB Report
 - NASA needs "three useful" camera views of the Shuttle during launch
- Providing:
 - Statistical model of cloud field
 - Forecast decision aid for the Space Shuttle Launch Weather Officer?

Conclusion

The AMU is a model for a successful strategy to transition technology to America's space program

http://science.ksc.nasa.gov/amu