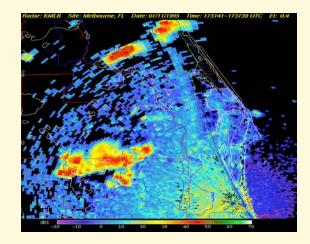


The Applied Meteorology Unit Operational Contributions to Spaceport Canaveral

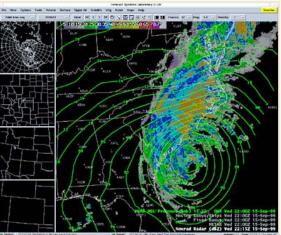
William H. Bauman III (ENSCO, Inc./AMU) William P. Roeder (USAF/45WS) Richard A. Lafosse (NWS/JSC/SMG) David W. Sharp (NWS/MLB) Francis J. Merceret (NASA/KSC)





Overview

- What's an AMU?
 - Purpose
 - History
 - How it works
- Technology delivered: a sampler
 - Forecast tools
 - Numerical weather prediction
 - Sensors
 - Miscellaneous



Purpose of the AMU

- <u>Goal</u>: Improve weather support to Space Shuttle and America's space program
- <u>Method</u>: Bridge the gap between research and operations
- <u>Technology Functions:</u>
 - Develop
 - Evaluate
 - Tailor

History of the AMU

- Established Oct 1991 by NASA, USAF, NWS MOU
 - Co-located with Range Weather Operations
 - Operated by ENSCO, Inc. under NASA contract
- Nationally recognized process
 for tasking by customers
- Outstanding performance

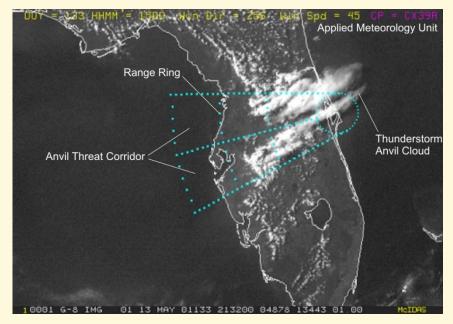
- Technical quality reflected in journal articles
- Administrative quality reflected in corporate award
- Customer satisfaction reflected in direct feed-back plus personal and group awards

How We Work: Tasking

- Customer-driven base-funded
 formal prioritized tasking
 - Quasi-annual in-person meeting
 - Teleconferences as required
 - Consensus process cited by
 Navy Best Manufacturing Practices Institute
- Customer-funded options hours tasking
- Customer-requested mission immediate tasking

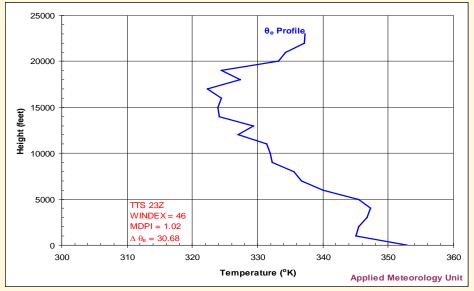

How We Work: Task Execution

- Customer involvement throughout
 - Design of the approach to be taken
 - Determination of the deliverables
 - Detailed technical reports quarterly
 - Teleconferences at key decision points
 - Beta testing and document preview
 - Training and follow-up after delivery
- Also cited by Navy Best Manufacturing Practices Institute



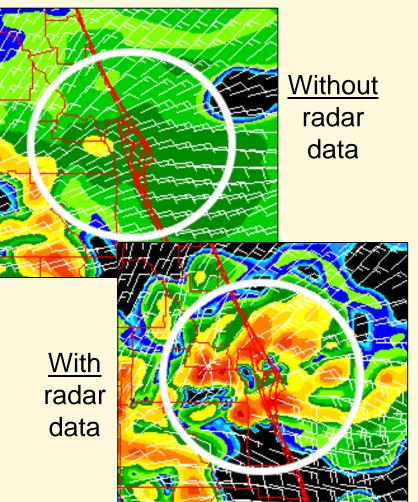
- Requirement:
 - Lightning Launch Commit Criteria
 - Space Shuttle Flight Rules
 - Avoid natural and triggered lightning
- Provided:
 - Threat corridor: if thunderstorms form here, their anvils will violate rules
 - Based on:
 - o Balloon observation
 - o Model forecast
 - Timing Rings: time until Launch & Flight Rules violated
 - Based on wind speed in anvil layer

Applied Meteorology Unit



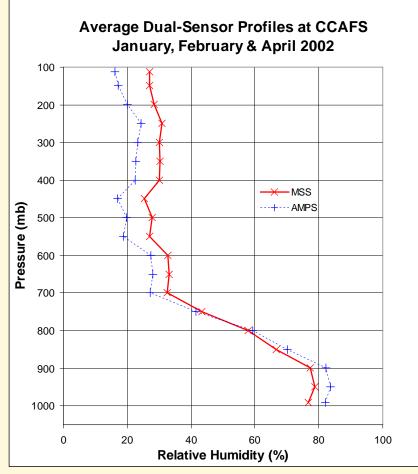
Microburst Prediction Tool

- Requirement: improve severe wind forecasts
- Provided:
 - Microburst-Day Potential Index
 - Downburst probability
 - Wind Index
 - Downburst maximum gust
 - Atmospheric stability chart



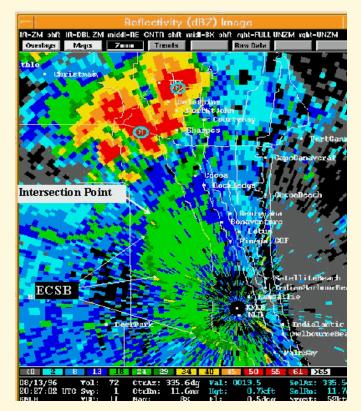
Numerical Weather Prediction

- Provided: local data
 assimilation software
 - All available data in one gridded database
 - Significant improvement in initialization of local forecast models
- Result:
 - Forecast improvement for all applications
 - Significant improvement in data visualization



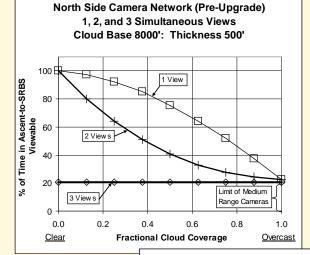
Sensor Evaluation

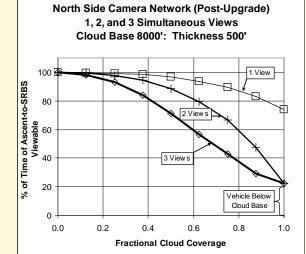
- Requirement: compare data from legacy upper air system with new one
 - Temperature and relative humidity differences
 - Changes in the measures of atmospheric stability
- Provided:
 - Documentation of relative humidity and temperature differences vs. altitude
 - Evaluation of impact on thunderstorm forecast indices


Applied Meteorology Unit

Severe Weather Event

- Requirement: evaluate why tornadoes and downbursts of 13 Aug 96 were poorly forecast
 - 'Mission Immediate' tasking
 - Damage to many cars, several buildings, and one aircraft
- Provided:
 - In-depth case study
 - Several training briefings





Shuttle Optical Imaging

- Requirement:
 - CAIB Report: NASA needs "three useful" camera views of the Shuttle during launch
- Providing:
 - Statistical model of cloud field
 - Forecast decision aid for the Space Shuttle Launch Weather Officer?

Conclusion

The AMU is a model for a successful strategy to transition technology to America's space program

http://science.ksc.nasa.gov/amu

Applied Meteorology Unit

