Global Environmental MEMS Sensors (GEMS): A Revolutionary Observing System for the 21st Century

> John Manobianco, Randolph J. Evans, Jonathan L. Case, David A. Short ENSCO, Inc.

Kristofer S.J. Pister University of California Berkeley

7th Symposium on IOS: The Water Cycle February 2003

Innovation Starts Here

Engineering • Science • Technology

Outline

- Introduction/definitions
- Concept description
- Major feasibility issues
- Simulations
- Summary

What are MEMS?

- Micro Electro Mechanical Systems (MEMS)
- Micron-sized machines + IC
- Sample applications

GEMS "Concept"

Integrated system of airborne probes

- Mass produced at very low per unit cost
- Disposable
- Suspended in the atmosphere
- Carried by wind currents
- MEMS sensors to measure T, RH, P
- Determine u,v based on position changes
- Self-contained with power source for
 - Sensing
 - Navigation
 - Communication
 - Computation
- Mobile, 3D wireless network with communication among
 - Probes
 - Intermediate nodes
 - Data collectors
 - Remote receiving platforms

T, RH

Pressure

Major Feasibility Issues

simulation

Probe design Power Navigation Communication Networking Sensors

Environmental Deployment Dispersion Scavenging Data rate Data impact

Oesign Cycle

Simulation Tools

- Numerical weather prediction model
 - Advanced Regional Prediction System (ARPS)
 - Virtual weather scenarios
 - Variable spatial & temporal resolution
- Lagrangian particle model
 - Probe deployment and dispersion
 - Simulate turbulence, terminal velocity, etc.
 - Scavenging (washout)

Experiment Design

"Identical Twin" Intermittent DA 30-minute Intervals

No Conventional OBS

Simulation	Description
Nature	RUC Analysis IC
Control	NOGAPS Forecast IC
OSSE 1	Assimilate T, RH, P, Wind
OSSE 2	Exclude RH
OSSE 3	Exclude Wind
OSSE 4	Exclude T
OSSE 5	Include errors
OSSE 6	Exclude 50% of OBS
OSSE 7	Exclude 75% of OBS

Simulation Domains

Simulation Results

Grid-Averaged Dew Point Statistics

Simulation Results (con't)

ENSCO, Inc.

Simulation Results (con't)

Grid-Averaged 2-hour Precipitation

Summary

- Advanced concept description
 - New observing system based on mobile network of wireless, airborne probes w/ MEMS sensors
- Key issues
- OSSE results

Phase I final report: <u>http://www.niac.usra.edu/studies/</u> Phase II award pending

manobianco.john@ensco.com

