Characteristics of Nocturnal Land Breezes over the Kennedy Space Center (KSC), Florida

Jonathan L. Case* John Manobianco and David A. Short

NASA-USAF-NWS Applied Meteorology Unit / ENSCO Inc.

Talk Outline

- Motivation / Objective for Studying Land Breezes
- Analysis Data Set
- Sample Events
 - 6 April 2000
 - 27 April 2000
- Seven-Year Climatology
- Summary

Motivation & Objective

- Operational Significance of Land Breezes at KSC
 - Toxic dispersion forecasts during launch operations
 - Influenced by low-level winds and stability
 - Critical to safety of Range personnel and public
 - Fog development / low cloud ceilings
 - Low temperatures
- Objective is to Develop Forecast Rules that:
 - Improve predictions of land-breeze occurrence
 - Determine timing, duration, speed, and direction

ENSCO, Inc.

Wind Towers and 915-MHz Profilers

- 44 wind towers
 - 5-km avg. spacing
 - -6 ft: T, T_d
 - 54 ft: Wind (all), T (some)
 - Tower 313: up to 492 ft over south KSC
- 915-MHz profilers
 - Five across KSC/CCAFS
 - Lowest gate: 130 m
 - Resolution: 100 m
 - Highest gate: up to 6 km*

*depends on meteorological conditions; typically around 3 km.

6 Apr 2000: Shallow Event with Cold Temps

27 Apr 2000: Retreating Sea-Breeze Event

Land-Breeze Climatology at KSC

- Seven Years: 1995 to 2002
 - Non-convective months only: OCT to MAY
 - Considered only mostly clear, rain-free nights
 - Average winds under 4 m s⁻¹
- Objective boundary identification technique
 - Barnes (1964) analysis of wind towers every 5 min
 - 1.25-km grid spacing
 - Temp at 6 & 54 ft; T_d at 6 ft; Wind at 54 ft
 - Tracks seaward-moving wind-shift lines
 - Refer to conference paper for algorithm details

ENSCO, Inc.

OCT NOV DEC JAN FEB MAR APR MAY

LB Climatology **Results: 1995-2002**

Number of Hourly TTS **Fog Reports vs. Month**

Land Breeze

Non Land Breeze

Number of Events vs. Onset Hour

LB Climatology Results, cont.

Tower 313 Land-Breeze Stats

	Depth			Sea Breeze During PM	
	> 150 m	< 150 m		SB	No SB
# Days	84	78	# Days	90	72
Mean Time	4.13	7.95	Mean Time	5.16	6.98
Median	4.00	8.13	Median	4.75	7.38
% SB	78.6%	30.8%			

ENSCO, Inc.

Summary and Conclusions

- Land breezes most frequent in late winter/spring
 - End of cool / dry season: Dry air and land mass
 - Largest diurnal contrast in temperatures
- Two possible types of land breezes over KSC
 - Retreating sea breeze
 - Early onset time
 - Deep column of offshore winds; stronger fronts
 - Thermally-driven land breeze
 - Late onset time
 - Shallow circulation (less than 150 m); weaker fronts
- AMU Quarterly Reports

http://science.ksc.nasa.gov/amu/home.html

27 Apr 2000: 915-MHz Profiler #3

