

SHORT-TERM FORECASTING OF CLOUD CEILING CATEGORIES AT KENNEDY SPACE CENTER FOR THE SPACE SHUTTLE PROGRAM

BACKGROUND

- Cloud ceiling over the Shuttle Landing Facility (SLF) at Kennedy Space Center (KSC) is a critical element in determining GO/NO GO forecasts for Space Shuttle landings.
- Spaceflight Meteorology Group (SMG) forecasters have found that cloud ceiling is a challenging parameter to forecast, even in the short-term (0-6 hours).
- The AMU was tasked to develop a statistical cloud ceiling forecast technique.
- Two recent studies provided guidance: Vislocky and Fritsch (1997), Hilliker and Fritsch (1999).

Map of Florida and station locations. Data from stations surrounded by boxes used in development.

EXPLORATORY DATA ANALYSIS

- Data analyzed to determine climatologies, trends, relationships between data types.
- Ceiling heights are preferred values.
- Reported ceiling heights estimated, not measured, prone to error.
- Uneven distribution of ceiling heights difficult to analyze statistically.

DATA STRATIFICATION

- 20-year dataset stratified into warm (April September) and cool (October March) season.
- Cool season used for equation development due to large number of events, few events in warm season.
- Cool season dataset separated into dependent (16 seasons) and independent (3 seasons) datasets for development and testing, respectively.

- March 1997.
- missing data.

- -Impossible value

Winifred C. Lambert

NASA Kennedy Space Center / Applied Meteorology Unit / ENSCO, Inc.

le	Binary Threshold			
it	< 10 000, < 8000, or < 5000 ft			
lover	> 1/10, > 5/10, or > 9/10			
on	N (315-45°), E (45-135°),			
	S (135-225°), and W (225-315°)			
	Yes			
ck Base	< 10 000, < 8000, or < 5000 ft			
ck Base	< 10 000, < 8000, or < 5000 ft			
ck Base	< 10 000, < 8000, or < 5000 ft			
ck Base	< 10 000, < 8000, or < 5000 ft			
	Actual Value			
	Actual Value			
	Actual Value			
pression	Actual Value			

le	Binary Threshold		
ht	< 10 000, < 8000, or < 5000 ft		
atology	Actual Value		

DEVELOPMENT

- 3 Predictands x 3 Lead Times x 24 Hours = 216 Equations/Method
- Statistical model for both methods is Multiple Linear Regression:

$$P = C_o + C_1 \mathbf{x}_1 + C_2 \mathbf{x}_2 + \dots C_n \mathbf{x}_n$$

• OBS predictors chosen using forward stepwise technique, stopped when new predictor did not explain > 0.5% of variance.

OBS Equation Stats:

- -In 212 of 216 equations, ob of predictor at initial time explained most of variance.
- -Number of predictors per equation ranged from 1 to 9.
- -Number of predictors per equation increased with lead time.
- -Most important predictors were ceiling or cloud cover obs.

PCL Equation Stats

- -1-Hour equations: ob of predictor at initial time explained most of variance.
- -2-Hour equations: climatology more important predictor, sometimes explaining most of variance.
- -3-Hour equations: climatology term explained most of variance in more than half.

OD and FAR scores using independent					
/alues are averaged over 24 valid times					
ach ceiling height/lead time category.					
Time	< 10 000	< 8000	< 5000		
ore	feet	feet	feet		
Probability of Detection)					
Hour	0.83	0.83	0.80		
Hour	0.73	0.70	0.65		
Hour	0.67	0.63	0.54		
False Alarm Rate)					
Hour	0.16	0.17	0.18		
Hour	0.21	0.23	0.24		
Hour	0.25	0.27	0.27		

PROBABILITY CUTOFF

- Previous POD/FAR calculated with 0.5 as probability cutoff between Yes/No forecast
- Appropriate value needed for operations

- Wilks (1995) suggests using Threat Score (TS) and Bias (B) to determine best cutoff value where TS is max and B=1.
- Hit Rate (HR), Kuipers Skill Score (KSS) used to confirm.
- Appropriate cutoff value between 0.4 and 0.5.

SUMMARY AND CONCLUSIONS

SUMMARY

- 216 OBS and 216 PCL equations for 3 ceiling categories/3 lead times valid each hour of day during cool season.
- Calculate probability for violation of Shuttle FR ceiling thresholds.

TEST RESULTS

• Final Conclusion:

-OBS equations performed well on independent dataset

-Indicates good performance in operations

- -Produce more accurate forecasts than PCL
- **OBS method: 9 15% improvement over PCL.**
- Improvement statistically significant beyond 99% confidence.
- PIs for 1-hour equations smallest; PIs increase with lead time; decrease with lower height category.
- PODs higher than FARs indicating good performance.
- Highest PODs/lowest FARs for 1-hour forecasts; degrade with increased lead time, but PODs higher than FARs.
- TS, B, HR, and KSS values indicated large percentage of correct forecasts (TS and HR), unbiased (B = 1), and superior to random forecasts (KSS > 0).

TEST RESULT ISSUES

- Equations explained **no more than 60% of variance** in data
- 3 possible explanations:
 - -Only surface observations used, upper-air data from rawinsondes, satellite, radar, 50 and 915 MHz profilers, or models may be needed.
 - -Surface data grouped into cool season stratified by time of day. Phenomenological stratification may be more useful.
 - -MLR may not be appropriate model.

OTHER STUDIES

- Accurate cloud ceiling forecasts also interest to aviation.
- Several studies funded by FAA, DOD, and other groups underway, e.g. Wilson and Clark (2000), Petty et. al. (2000).
- Results will be monitored to determine if they could be applied to Space Shuttle FR ceiling forecasts.

OPERATIONAL USE

- Equations to be used only in the cool season from October to March and only at the SLF.
- All equations require input that is readily available from standard METAR code.
- Although developed for SMG, 45th Weather Squadron may use them to forecast for requirement to visually track the Shuttle solid rocket boosters through 8000 ft.
- Equations provide another tool to improve ceiling forecasts when combined with other observational and model data and forecaster experience.